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A B S T R A C T   

Fisher’s geometric model provides a powerful tool for making predictions about key properties of Darwinian 
adaptation. Here, I apply the geometric model to predict differences between the evolution of altruistic versus 
nonsocial phenotypes. I recover Kimura’s prediction that probability of fixation is greater for mutations of in-
termediate size, but I find that the effect size that maximises probability of fixation is relatively small in the 
context of altruism and relatively large in the context of nonsocial phenotypes, and that the overall probability of 
fixation is lower for altruism and is higher for nonsocial phenotypes. Accordingly, the first selective substitution 
is expected to be smaller, and to take longer, in the context of the evolution of altruism. These results strengthen 
the justification for employing streamlined social evolutionary methodologies that assume adaptations are 
underpinned by many genes of small effect.   

Finally, it must be pointed out that the model is not applicable to the se-
lection of new mutations. Sibs might or might not carry the mutation 
depending on the point in the germ-line of the parent at which it had 
occurred, but for relatives in general a definite number of generations 
must pass before the coefficients give the true—or, under selection, the 
approximate—expectations of replicas. This point is favourable to the 
establishment of taking-traits and slightly against giving-traits. — Ham-
ilton (1964, p14) 

1. Introduction 

Fisher’s (1930, pp38-41) geometric model provides a powerful tool 
for predicting key properties of the process and products of Darwinian 
adaptation (reviewed by Tenaillon 2014). Dispensing with the particu-
lars of biology, it describes an abstract phenotypic space in which the 
fitness of any phenotype is a decreasing function of its Euclidean dis-
tance from the optimal phenotype, and in which mutations are repre-
sented by leaps of random magnitude in random directions within this 
phenotypic space. Fisher (1930) used the geometric model to argue that, 
on account of their higher probability of moving the phenotype closer to 
the optimum as opposed to taking it further away, mutations of small 
effect are more likely to be beneficial and hence contribute to adapta-
tion. Kimura (1983, p155) subsequently pointed out that, conditional 
upon their being beneficial, mutations of larger effect are more likely to 
avoid stochastic loss, such that adaptation will proceed in steps of in-
termediate size. 

In typical applications of the geometric model, the probability of 
fixation of a beneficial mutation is calculated upon the explicit or im-
plicit assumption that the selection coefficient associated with the mu-
tation remains constant over the course of its sojourn in the population. 
However, this assumption may be violated in the context of the evolu-
tion of altruism. Specifically, an allele encoding altruism may enjoy a 
selective advantage only insofar as the direct fitness cost experienced by 
its carrier is offset by benefits to other individuals who also carry copies 
of the same allele (Hamilton 1963). Accordingly, the allele will suffer a 
selective disadvantage upon its first appearance, in which it is present in 
only one copy, but may enjoy a selective advantage in subsequent 
generations in which it is present in multiple copies carried by multiple, 
socially-interacting relatives—provided that it has not already been lost 
from the population (Hamilton 1964, p14). The implications of this 
complexity for the geometry of adaptation remain to be investigated. 

Here, I use the geometric model to predict differences in rate and 
genetic architecture for altruistic versus nonsocial adaptation. In an 
altruism scenario, I consider that fitness is modulated by interaction 
between clonemates; and in a nonsocial scenario, I consider that fitness 
is determined solely by the individual’s own phenotype. I derive 
mathematical expressions describing probability of fixation as a func-
tion of mutational effect size under both altruism and nonsocial sce-
narios and use these to determine the average size of—and waiting time 
for—the next adaptive substitution, and I confirm these analytical re-
sults using numerical simulations. 
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2. Model and analysis 

Model—I assume a very large population of asexual, haploid organ-
isms. In each generation a fixed number of haploid spores each give rise 
to two clonal individuals, and each individual gives rise to a Poisson- 
distributed number of spores, in proportion to her fitness. In the 
nonsocial scenario, I consider that an individual’s fitness—i.e. expected 
number of offspring—is determined solely by her own phenotype and, in 
order that there be stabilizing selection about an intermediate optimum, 
I assume that fitness is given by w = 1 + x – x2, where x  is the in-
dividual’s phenotypic trait value (0 ≤ x ≤ 1; Fig. 1a). In the altruism 
scenario, I consider than an individual’s fitness is determined by both 
her own phenotype and also by the phenotype of her clonal twin, and is 
given by w = 1 + y – x2, where x  is her trait value (0 ≤ x ≤ 1) and y is the 
her twin’s trait value (0 ≤ y ≤ 1; Fig. 1b); that is, the trait incurs a 
personal cost and provides a benefit to one’s twin. Note that, insofar as 
twins are genetically identical, then they share the same phenotype (y =
x), and hence the fitness functions are identical in both altruism and 
nonsocial scenarios. Only de novo mutation, arising in one twin and not 
the other, yields fitness differences between the two scenarios. 

Geometry of adaptation—I consider a genetically uniform population 
in which every individual has trait value x  = 0 (and, accordingly, every 
individual’s twin has trait value y = 0), such that the average fitness of 
all individuals in the population is w  = 1. A mutational event is rep-
resented as one individual taking on a new trait value, uniformly 
distributed over the interval 0 ≤ x ≤ 1, which then either proceeds to 
fixation under the action of natural selection or else is lost from the 
population. 

The mutant allele’s probability of fixation depends upon its selection 
coefficient. In the nonsocial scenario, an initial mutation of size x  results 
in fitness w = 1 + x – x2, and hence a relative fitness of 1 + s where s = x 
– x2, consistently in every generation. In the altruism scenario, an initial 
mutation of size x  results in fitness w = 1 – x2 in its first generation 
(owing to the carrier individual’s twin having wildtype trait value y =
0), and it enjoys fitness w = 1 + x – x2 in every subsequent generation 
(owing to the twin also carrying this allele, such that y = x). That is, in 
the altruism scenario, the mutation of size x results in relative fitness 1 – 
t in the first generation and relative fitness 1 + s in every generation 
thereafter, where t = x2 and s = x – x2. In the Appendix, I derive ex-
pressions for the probability of fixation pN(x) of a mutation of effect size 
x  in the nonsocial scenario, and for the probability of fixation pA(x) of a 
mutation of effect size x  in the altruism scenario. Solutions for these 
fixation probabilities are given in Fig. 2a, along with results from nu-
merical simulations (see Appendix for details). 

The overall probability of fixation for a mutation whose random, 
uniformly distributed effect size falls within the unit interval, is πN =

∫
0
1pN(x)dx = 0.143 for the nonsocial scenario and πA =

∫
0
1pA(x)dx =

0.086 for the altruism scenario (these values correspond to the areas 
under the curves in Fig. 2a). That is, without conditioning on a muta-
tion’s effect size, its probability of fixation in the altruism scenario is, on 
average, only 60% of the probability of fixation of the corresponding 
mutation in the nonsocial scenario. Accordingly, the evolution of 
altruism is expected to proceed more slowly than nonsocial adaptation, 
with the expected waiting time until the appearance of the first suc-
cessfully fixing mutation being 66% longer (Fig. 2b). 

This impeding of the evolution of altruism is stronger for mutations 
of larger effect, which skews the distribution of effect sizes of success-
fully fixing mutations in favour of smaller values. The probability dis-
tribution of effect sizes of the first successfully fixing mutation is given 
by ϕN(x) = pN(x)/πN for the nonsocial scenario and by ϕA(x) = pA(x)/πA 
for the altruism scenario. These distributions are given in Fig. 2c, along 
with results from numerical simulations (see Appendix for details). 
Finally, the expected effect size of the first fixed mutation is x*N =∫

0
1ϕN(x)xdx = 0.500 for the nonsocial scenario and x*A =

∫
0
1ϕA(x)xdx =

0.425 for the altruism scenario (Fig. 2c). That is, the expected size of the 
first fixed mutation in the altruism scenario is only 85% of the expected 
size of the first fixed mutation in the nonsocial scenario. 

3. Discussion 

Using analytical and numerical simulation methods, I have shown 
that the evolution of altruism is expected to proceed in smaller steps, 
each taken more slowly, than is nonsocial adaptation. These results owe 
to a basic asymmetry in probability of fixation. In a nonsocial setting, a 
mutant allele that would be expected to rise towards eventual fixation in 
a purely deterministic world has some probability of being lost from the 
population soon after its first appearance, and this probability is reduced 
if the mutation has a larger beneficial effect, on account of natural se-
lection working more effectively to counter its stochastic loss. In 
contrast, in the context of altruism, a similar mutant allele may actually 
be disfavoured by natural selection upon its first appearance if its long- 
term advantage owes to benefits it provides to its carrier’s genealogical 
kin—as initially these kin will not carry copies of the same allele—and 
hence its probability of stochastic loss in its first generation of existence 
is reduced if it has a smaller phenotypic effect. 

The asymmetry between altruistic versus nonsocial adaptation is not 
expected to affect the phenotype that is eventually reached at the end of 
the adaptive trajectory, but it is expected to impact upon this trait’s 
genetic architecture, with altruism being predicted to be underpinned 
by a relatively larger number of genes with relatively smaller phenotypic 
effects. Such quantitative genetic architecture is a key assumption for a 
range of theoretical evolutionary methodologies, including the Taylor- 

Fig. 1. The fitness landscape. (a) In the nonsocial scenario, the fitness of a focal individual bearing a mutant allele is given by w = 1 + x – x2, where x  is the 
phenotype encoded by the mutant allele. (b) In the altruism scenario, fitness of a focal individual bearing a mutant allele is given by w = 1 + y – x2, where x  is the 
phenotype encoded by the mutant allele, and where the clonal partner’s phenotype is given by y = 0 (dashed line) upon the first appearance of the mutant allele and 
by y = x (solid line) in every subsequent generation. 
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Frank neighbour-modulated fitness approach to modelling kin selection 
(Taylor & Frank 1996), in which the assumption of vanishingly small 
amounts of genetic variation enables fitness-trait regressions to be 
captured as derivatives of fitness functions, facilitating the use of 
powerful calculus techniques that help to render models more analyti-
cally tractable. The present analysis suggests that this assumption has 
relatively better justification in the context of the evolution of altruism. 

The aim of the present analysis has been to provide a quantitative 
illustration of this basic asymmetry between altruistic versus nonsocial 
adaptation, rather than a fully general account. I have assumed a highly 
stylized population in which mutations are considered to arise in such a 
way that they are never shared by social partners in their first generation 
of existence and are always shared by social partners in all subsequent 
generations. More generally, depending upon its precise timing, a new 
mutation could initially be carried by multiple siblings, and insofar as 
social interaction occurs between more distant relatives it might take 
multiple generations for relatedness to attain its equilibrium value 
(Hamilton 1964). With regard to the latter, Mullon & Lehmann (2014) 
have reported a similar impediment to altruism in an island-model 
setting that occurs in all generations of an allele’s sojourn, rather than 
only the first generation. In contrast to the present effect, which owes to 
genealogical relatives initially being genetically unrelated, theirs owes 
to dispersing altruists being unrelated—both genetically and genealo-
gically—to social partners and hence struggling against strong selection 
to establish their lineage locally. 

Moreover, the present model has assumed haploid inheritance, such 
that the complexities of dominance and recessiveness do not arise. In a 
diploid setting, recessive alleles encoding altruism would be invisible to 
selection while present in only one copy upon their first appearance in 
the population, and hence would be less susceptible to immediate loss. 
This mirrors “Haldane’s sieve”, whereby dominance facilitates the fix-
ation of (nonsocial) beneficial alleles on account of recessive beneficial 
alleles being more liable to stochastic loss while present in only a small 
number of copies (Haldane 1922, 1924; Turner 1981). Furthermore, 
although the geometric model focuses attention on the supplanting of a 
wildtype by a de novo mutant phenotype, adaptation to new selection 
pressures will usually be fuelled, at least in part, by standing variation in 
respect to which genealogical kin are already genetically correlated. 

To facilitate comparison, the present analysis has considered 
altruism versus nonsocial scenarios that are contrived to be identical in 
every respect other the core asymmetry of interest, in order that this 
obstacle to the evolution of altruism may be carefully isolated and 

quantified. More realistically, in any comparison between a given 
altruism phenotype and a given nonsocial phenotype, many additional 
factors are liable to be confounding. Microbes might be relatively 
amenable to an experimental test involving, for example, a contrast 
between antibiotic-resistance conferring enzymes with intracellular 
(private good) versus intercellular (public good) activity (Frost et al. 
2018)—representing nonsocial versus altruistic scenarios, respectively-
—and more readily allowing for whole-genome evolution to be tracked 
over multiple generations. 

The present analysis focuses upon a particular social scenario in 
which the individual has full control over her phenotype and where her 
phenotype modulates both her and her social partner’s fitness. Muta-
tional substitutions of larger effect might be expected in other social 
settings, including in the context of evolutionary conflicts in which 
different parties, with different fitness interests, share control over the 
phenotype (Scott & Queller 2019; Rautiala & Gardner 2023). Indeed, 
Rautiala & Gardner’s (2023) application of the geometric approach to 
conflict scenarios has highlighted the possibility for successive fixed 
mutations to “leap-frog” from the far side of one conflicting party’s 
fitness optimum to the far side of an opponent’s, and back again, 
resulting in an arbitrarily large degree of maladaptation and starkly 
contrasting with the monotonic increase in fitness that characterizes 
Fisher’s (1930) original model. 
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Fig. 2. Probability of fixation of mutant alleles (panel a), distribution of number of generations until the appearance of the first successfully fixing mutant allele 
(panel b), and distribution of effect size of the first successfully fixing mutant allele (panel c), in nonsocial (grey) and altruism (black) scenarios, derived analytically 
(lines) and confirmed by numerical simulation (dots). Arrows indicate analytically derived averages for the nonsocial (grey) and altruism (black) scenarios. 
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Appendix 

Fixation probability—An allele that confers a consistent relative fitness advantage s in every generation ultimately fixes in the population with 
probability 

p = 1 −
∑∞

k=0

e− 1+s
2

(
1+s

2

)k

k!
(1 − p)2k

= 1 − e
−

(

1+s
2

)

(1− (1− p)2)
(A1)  

conditional upon initially being present as a single copy. That is, its carrier produces a Poisson-distributed number k of spores, with expectation (1 +
s)/2, which yield 2 k offspring, of which each has probability 1-p of leaving no descendants in the long term; the probability that the carrier herself 
leaves no descendants in the long term is given by the probability that none of her 2 k offspring do so, and the probability that this outcome does not 
obtain defines the probability of eventual fixation. It is straightforward to show that p ≈ s for small s; note that this differs from Haldane’s (1927, p839) 
result p ≈ 2 s, by a factor of two, on account of the clonal duplication of spores in the present model, which is done as a convenient means for 
implementing social interaction between relatives. More generally, an explicit analytical solution to this equation is not possible, but the equation is 
readily solved numerically. In relation to the nonsocial scenario described in the main text, the fixation probability of a mutation of effect size x  is 
given by pN(x) = p|s=x-x^2. 

An allele that confers a relative fitness disadvantage t in its first generation and a consistent relative fitness advantage s in all subsequent gen-
erations ultimately fixes in the population with probability 

p′ = 1 −
∑∞

k=0

e− 1− t
2

(
1− t

2

)k

k!
(1 − p)2k

= 1 − e
−

(

1− t
2

)

(1− (1− p)2)
(A2)  

where p is given by equation (A1), as before. That is, only the probability distribution of the initial carrier’s number of offspring differs between the 
altruism and nonsocial scenarios, owing to the single-generation disadvantage accrued in the altruism scenario; conditional upon its initial carrier 
producing a given number of offspring 2 k, the allele’s evolutionary prospects are the same in both scenarios. Again, an explicit analytical solution to 
this equation is not possible, but the equation is readily solved numerically. In relation to the altruism scenario described in the main text, the fixation 
probability of a mutation of effect size x  is given by pA(x) = p′|s=x-x^2,t=x^2. 

Numerical simulations—To confirm the fixation-probability results, a numerical simulation is conducted in which a population of 250 spores un-
dergoes doubling to produce 500 individuals, each of which then produces a large number of clonal spores in proportion to its fitness (as described in 
the main text), of which 250 spores are chosen at random to form the next generation. In the first generation only, one individual is assigned a mutant 
phenotypic value of x, and all other individuals are assigned phenotypic value of zero. 103 generations of evolution are followed, after which the 
mutant is said to have become fixed in the population if it is still present and to have been lost from the population if it is no longer present; this 
approach potentially overestimates the probability of fixation, as beneficial alleles that have persisted for 103 generations might subsequently be lost 
from the population, but in practice it provides a good approximation. 105 replicates are performed, yielding an estimate of the fixation probability. 
This procedure is repeated for several different values of x  and for both altruism and social scenarios. Mathematica code used to run the simulations 
and generate Fig. 2a is provided as supplementary material. 

To confirm the distribution-of-waiting-time and effect-size results, a numerical simulation is conducted in which a population of 250 spores 
undergoes doubling to produce 500 individuals, each of which then produces a large number of clonal spores in proportion to its fitness (as described 
in the main text), of which 250 spores are chosen at random to form the next generation. Initially, all individuals have a phenotypic value of zero. In 
every generation, every individual has an independent probability 10− 4 of being assigned a mutant phenotypic value that is uniformly distributed over 
the unit interval, and the generation in which this mutation arises is recorded. If a subsequent mutational event occurs in an individual already holding 
a mutant phenotype, the individual is considered to retain the original mutation and to also accrue a new mutation elsewhere in their genome. 2 × 103 

generations of evolution are followed, after which one individual is chosen at random and the earliest-arising mutation in its genome is examined. The 
generation in which this mutation first appeared and the size of the mutation is recorded. 103 replicates are performed, yielding distributions for both 
waiting time and effect size. This procedure is then repeated for both altruism and social scenarios. Mathematica code used to run the simulations and 
generate Fig. 2b and c is provided as supplementary material. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jtbi.2023.111653. 
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