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The study of sex allocation—that is, the investment of resources into male
versus female reproductive effort—yields among the best quantitative
evidence for Darwinian adaptation, and has long enjoyed a tight and
productive interplay of theoretical and empirical research. The fitness conse-
quences of an individual’s sex allocation decisions depend crucially upon
the sex allocation behaviour of others and, accordingly, sex allocation is
readily conceptualized in terms of an evolutionary game. Here, I investigate
the historical development of understanding of a fundamental driver of the
evolution of sex allocation—the rarer-sex effect—from its inception in the
writing of Charles Darwin in 1871 through to its explicit framing in terms
of consanguinity and reproductive value by William D. Hamilton in 1972.
I show that step-wise development of theory proceeded through refinements
in the conceptualization of the strategy set, the payoff function and the
unbeatable strategy.

This article is part of the theme issue ‘Half a century of evolutionary
games: a synthesis of theory, application and future directions’.
In some features it has an unexpectedly close similarity to certain types of situations
considered in the ‘theory of games’ – W. D. Hamilton, 1967 [1. p. 477]
1. Introduction
The theory of games provides a toolkit for investigating rational decision
making in scenarios wherein each agent’s payoff depends on the decisions
taken by others [2]. Its key elements are the strategy set, the payoff function
and—in so-called ‘non-cooperative’ games—the concept of the Nash equili-
brium [3]. The strategy set describes the options that are available to each
agent, the payoff function describes how well an agent’s objectives are realized
as a consequence of the decisions taken by all agents, and the Nash equilibrium
provides a generalization of the concept of the optimal strategy, such that when
all agents adopt this strategy no agent would be able to improve their payoff by
switching to a different strategy.

Evolutionary game theory is the application of this tool kit to other
domains—such as the biological—in which the axiom of rationality is replaced
by the action of Darwinian selection, which is understood to lead individuals
to behave ‘as if’ they are rational, fitness-maximizing agents [4]. In some
applications, the action of selection is implicit, and individuals are simply
assumed to maximize their fitness or some proxy of this. In others, the
evolutionary dynamics are explicitly described and may be of interest in their
own right over and above their use in identifying equilibria and characterizing
their stability. Although its boundaries with alternative evolutionary
approaches—such as theoretical population genetics—are often blurred, the
evolutionary game-theoretic outlook reveals itself in its use of the language
of strategy.

The dawn of evolutionary game theory is typically seen as being synonymous
with the publication of Maynard Smith’s & Price’s The logic of animal conflict in
1973 [5]. Yet, during the century preceding this landmark paper, the principles
of evolutionary game theory had already been successfully applied to the
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(a) (b) (c)
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Figure 1. The history of the rarer-sex effect. (a) Charles Darwin first formulated a theory of the rarer-sex effect, focusing upon equalization of the adult sex ratio, in
1871. (b) Karl Gerhard Düsing provided a mathematical analysis, based on number of grandoffspring, in 1883. (c) Corrado Gini clarified aspects of the logic, but
ultimately rejected the principle, in 1908. (d ) John Austin Cobb (shown here aged 13–14 in 1880) reframed the theory in terms of the sex ratio of newborns,
parental expenditure and reproductive value in 1914. (e) Ronald Aylmer Fisher provided a mathematical account of reproductive value in 1927 and 1930. ( f ) William
Donald Hamilton incorporated consanguinity and developed the concept of the unbeatable strategy between 1964 and 1972. Image credits: (a) public domain; (b)
Hauke Heinecke; (c) Italian National Institute of Statistics, [7]; (d ) Clive Cobb; (e) public domain; ( f ) Sarah Hrdy.
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problem of sex allocation. Here, I investigate the historical
development of understanding concerning a fundamental
driver of the evolution of sex allocation—the rarer-sex
effect—from its inception in the writing of Charles Darwin in
1871 through to its explicit framing in terms of consanguinity
and reproductive value by William D. Hamilton in 1972. I
show that step-wise development of the theory proceeded
through refinements in the conceptualization of the strategy
set, the payoff function and the unbeatable strategy.
2. Charles Darwin
The first person to apply Darwinian thinking to the problem of
sex allocation appears to have been Charles Darwin (1809–1882
[6]; figure 1a) himself [8,9], in the first edition of The descent of
man [10]. The problem, as he saw it, is to explain the approxi-
mately equal numbers of males and females among newborns
in many animal populations. Earlier thinkers who had also
tackled this problem include John Arbuthnot who, in 1710,
argued that the unbiased sex ratio evidences divine providence
in that it ensures that ‘every Male may have a Female of the
same Country and suitable Age’ [11. p. 188]. Darwin’s solution
borrows heavily from this natural–theological outlook and
simply substitutes the divine with the action of natural selec-
tion, yielding an inchoate formulation of the rarer-sex effect.

Darwin’s starting point is to imagine a monogamous
species in which males have—for some unspecified reason—
come to outnumber females at birth, resulting in an excess of
unpaired males upon these individuals reaching reproductive
maturity. He supposes that, in such circumstances, if some
parents have a tendency to produce fewer sons and, corre-
spondingly, more daughters, then these parents will be more
evolutionarily successful in the sense that more of their off-
spring would expect to reproduce, such that their heritable
tendency for a relatively female-biased sex ratio will spread
and act to neutralize the male bias at the population level. In
his words [10, p. 316]:
Let us now take the case of a species producing from the
unknown causes just alluded to, an excess of one sex—we will
say of males—these being superfluous and useless, or nearly use-
less. Could the sexes be equalised through natural selection? We
may feel sure, from all characters being variable, that certain
pairs would produce a somewhat less excess of males over
females than other pairs. The former, supposing the actual
number of the offspring to remain constant, would necessarily
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produce more females, and would therefore be more productive.
On the doctrine of chances a greater number of the offspring of
the more productive pairs would survive; and these would
inherit a tendency to procreate fewer males and more females.
Thus a tendency towards the equalisation of the sexes would
be brought about.
 publishing.org/journal/rstb

Phil.Trans.R.Soc.B
378:20210500
Darwin then supposes that the opposite would occur were
there a female bias at the population level, such that natural
selection would favour those parents who invest more into
sons than daughters, which again would serve to neutralize
the population-level sex-ratio bias. Moreover, he suggests
that, even if parents who produce fewer offspring of the
more common sex do not produce a correspondingly larger
number of offspring of the rarer sex, the corrective action of
natural selection may nevertheless continue to operate on
account of these parents being able to allocate the same
amount of reproductive resources among a smaller number
of offspring and hence giving each of their rarer-sex offspring
an advantage over same-sex competitors.

This formulation of the rarer-sex effect makes logical sense,
but it applies only to a very specific set of circumstances.
Darwin is explicit about his assumption of monogamy, but
he leaves implicit an important assumption that the sex ratio
among newborns is approximately equal to the sex ratio
among reproductively mature adults. This is crucial because
Darwin is viewing natural selection as adjusting the newborn
sex ratio so as to give an adult sex ratio in which there is no
excess of individuals of either sex, echoing Arbuthnot’s earlier
argument. Were there, for example, a strong male bias in mor-
tality prior to reproductive maturity, then a correspondingly
strong male bias among newborns would be required in
order to ensure an unbiased sex ratio among adults (cf. [11]).

Darwin’s logic gets into more difficulty when he attempts
to relax the assumption of monogamy, as betrayed by his
remark [10, p. 317]:
So it would be with polygamous species, if we assume the excess
of females to be inordinately great.
That is, he implies that natural selection will not act to
neutralize even a strongly female-biased sex ratio so long as
all females are successfully mated. This underlines that
Darwin is viewing natural selection as acting to adjust the
newborn sex ratio so as to ensure an adult sex ratio in
which all reproductive adults are able—in principle—to
enjoy reproductive success, irrespective of the quantitative
levels of reproductive success enjoyed by individual females
and males in such circumstances. His account also becomes
muddied by ‘for the good of the species’ thinking, as he
expresses a concern that the corrective action of natural selec-
tion in relation to the sex ratio might result in population
growth and concomitant strain on reproductive resources,
and he suggests that individuals will consequently be
favoured to employ voluntary reduction of fecundity in
order to ensure the continued existence of their species.

Perhaps on account of these confusions, Darwin removed
his discussion of the rarer-sex effect from subsequent editions
of the The descent of man, remarking that [12, pp. 259–260]:
I formerly thought that when a tendency to produce the two
sexes in equal numbers was advantageous to the species, it
would follow from natural selection, but I now see that the
whole problem is so intricate that it is safer to leave its solution
for the future.
Despite these difficulties, Darwin’s exposition of the rarer-sex
effect is notable for the sophistication with which he
conceptualizes the strategy set—in particular, in his under-
standing that parents face a trade-off, such that the decision
to invest fewer reproductive resources into offspring of one
sex will naturally enable a greater investment into offspring
of the other sex. His account is also remarkable in the way in
which he seeks to identify the equilibrium sex ratio, not by
assuming that there is a universally optimal sex ratio thatmaxi-
mizes the evolutionary success of parents who employ it
regardless of what other parents in the population are doing,
but instead by considering a range of possible population sex
ratios and investigating their vulnerability to invasion by
alternative sex-allocation strategies. That is, Darwin’s view of
the evolution of the sex ratio is fundamentally game-theoretic.

Where Darwin’s argument comes unstuck—in relation to
polygamy and species-level benefit—the culprit appears to be
a lack of clarity concerning the appropriate payoff function.
Whereas Darwin was able to reason about the adaptive evol-
ution of most organismal traits from considerations of their
consequences for lifetime reproductive success, this approach
is less helpful in relation to the sex ratio, as it concerns the sex,
rather than the number, of offspring. From a qualitative per-
spective, Darwin sees that excess, unmated individuals of the
more-common sex in a monogamous species represent a
waste of parental expenditure that could have instead been
allocated to offspring of the rarer sex. However, from a quan-
titative perspective, he struggles to understand how fitness
can be evaluated in polygamous species whereby, even
with a strongly female-biased adult sex ratio, all females
are still assured of mating success.
3. Karl Gerhard Düsing
Quantitative insight into the problem of the sex ratio came in
the following decade, with Karl Gerhard Düsing’s (1859–1924
[13]; figure 1b) mathematical treatment of the rarer-sex effect
[9]. Düsing’s work was undertaken during his doctoral
studies at the University of Jena [14] and presented in several
publications from 1883 to 1884. Edwards [15] provides more
details of these publications—and an English-language
translation of a key passage, from which I quote below.

Düsing’s progress owes to his use of a concrete payoff
function, which facilitates quantitative analysis. In place of
the number of offspring that a mother succeeds in producing
during her lifetime, which is often used as a measure of Dar-
winian fitness, Düsing considers her expected number of
grandoffspring to provide the proper evaluation of her evol-
utionary success. Inviting the reader to imagine a population
in which males outnumber females, he argues [15, p.
256] that:
All the males taken together have just as many offspring as all the
females have (namely the same ones). Since the latter are in a
minority, each of the females has on average a greater number
of offspring than each of the males.
Specifically, denoting the number of females by x, the number
of males by nx and the total number of offspring by z, Düsing
calculates the expected number of offspring produced by a
female as z/x and the expected number of offspring produced
by a male as z/nx, such that a female can expect to produce n
times as many offspring as a male. On that basis, he suggests
that a mother who produces more daughters than sons is
expected to achieve a larger number of grandoffspring than a
mother who produces the same number of offspring with
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the opposite sex ratio, and he provides numerical examples to
illustrate that a higher investment into offspring of the rarer
sex—whether that be females or males—is associated with a
higher expectation of grandoffspring number.

In contrast to Darwin’s analysis, Düsing considers the
different payoffs of individuals adopting different sex ratios
not only in the context of population imbalances in the
sex ratio but also in the context of populations in which
there are equal numbers of males and females; in the
unbiased setting he determines that a mother’s expected
number of grandoffspring is independent of the sex ratio of
her offspring. This potentially invites the interpretation that
Düsing has completed a full evolutionary game-theoretic
analysis—i.e. in addition to showing that the population is
expected to evolve toward an unbiased sex ratio whenever
there is any sex-ratio imbalance, he has shown that this
unbiased sex ratio is not evolutionarily usurped once it has
been attained. However, this interpretation is too simplistic.

Düsing’s framing of the rarer-sex effect is in terms of natu-
ral selection having endowed organisms with an adaptive
capacity for facultative adjustment of the newborn sex ratio
in response to environmentally modulated imbalances in
the adult sex ratio. That is, his x and nx terms represent the
total numbers of females and males of all ages, rather than
at birth. His mathematical account is accompanied by a dis-
cussion of empirical observations that he suggests lend
support to this hypothesis, including: data from humans
and horses revealing a male bias at birth, which he appears
to interpret as correcting for higher male infant mortality so
that an unbiased sex ratio can be realized among adults (cf.
[11]); reports of a greater number of male births in humans
in the aftermath of war; and a section on arrhenotoky—the
development of males from unfertilized eggs—in bees as a
means of restoring sex-ratio balance when males are rare or
absent. Under a literal interpretation of Düsing’s hypothesis,
whereby natural selection leads individuals to exclusively
produce newborns of whichever sex is currently underrepre-
sented among adults, we might expect to observe striking
and sustained oscillations in sex ratio from generation to
generation (cf. [1,16,17]) rather than gradual correction of
sex-ratio imbalance over an evolutionary timescale.
4. Corrado Gini
A sharpening of the logic of the rarer-sex effect was
provided by Corrado Gini (1884–1965 [18]; figure 1c) in his
1908 book Il sesso dal punto di vista statistico [9,19]. His
contribution is unusual in that, while he made incisive refine-
ments to understanding of how natural selection acts in
relation to the sex ratio—in particular, clarifying the fitness
payoffs associated with the production of sons versus
daughters—a simple logical error ultimately led him to
reject the principle.

In contrast to Darwin and Düsing, who saw the balancing
of the adult sex ratio as being of central importance and the
newborn sex ratio as merely an instrument by which this
might be achieved, in Gini’s account the selection pressures
shaping sex-ratio evolution are fundamentally governed by
the newborn sex ratio, and the adult sex ratio is largely irrele-
vant. Crucially, he argues that higher mortality of one sex
prior to reproductive maturity does not lead to natural selec-
tion favouring a compensatory increase in the production of
newborns of that sex in order to restore a balanced adult sex
ratio, because although the surviving offspring of the higher-
mortality sex have higher reproductive success a mother who
produces more newborns of the higher-mortality sex has
correspondingly fewer surviving offspring [9].

Gini also highlights that Darwin’s and Düsing’s logic
implicitly assumes that the heritable factors that modulate
sex ratio are passed on to—and by—both sons and daughters,
such that the reproductive success of both sons and daughters
contributes to a parent’s evolutionary success. He argues that
if, instead, sex-ratio factors were uniparentally inherited, then
only offspring of the corresponding sex would count towards
the evolutionary success of the corresponding parent, such
that to the extent that this parent wields control over the sex
ratio they would be favoured to produce only offspring of
their own sex. For example, if transmission is only from
mother to daughter, then mothers would be favoured to pro-
duce all-female broods. Gini makes explicit that his purpose
is not to argue that sex-ratio factors are actually inherited in a
uniparental manner, but rather to expose a hidden assumption
of biparental inheritance that he holds to be valid. Indeed, he
argues that his analysis, taken in conjunctionwith the empirical
observation of balanced sex ratios, proves that sex-ratio factors
are biparentally inherited. Nevertheless, his insights concern-
ing the sex-ratio ramifications of uniparental inheritance—
which I have not seen acknowledged elsewhere—pre-empt
by several decades Lewis’s [20] analysis of mitochondrially
driven male sterility and Hamilton’s [1] analysis of driving
Y-chromosomes.

Having made these important contributions, Gini sud-
denly rejects the logic of the rarer-sex effect altogether,
declaring that ‘Natural selection has no influence on the sex
ratio at birth’ ([19, p. 328], translation mine). How does he
arrive at this conclusion? Firstly, in relation to Darwin’s scen-
ario wherein mothers producing fewer offspring of the more-
common sex are thereby able to produce a correspondingly
larger number of offspring of the rarer sex, Gini acknowl-
edges that such mothers will have more grandoffspring, but
he argues that their impact on future generations will
be exactly counterbalanced by that of less-successful but
numerically superior mothers who bias the sex ratio of
their offspring toward the more common sex. This argument
is fallacious, as discussed by Edwards [9], in particular as it is
the differential evolutionary success of mothers employing
sex ratios above versus below the current population sex
ratio—rather than that of mothers employing absolutely
female-biased versus male-biased sex ratios—that drives
sex-ratio evolution.

Secondly, in relation to the scenario wherein a mother
who produces fewer offspring of the more common sex
does not produce more offspring of the rarer sex but is
thereby able to invest more resources into the rearing of
each one of her rarer-sex offspring, providing them with
an advantage over their same-sex competitors, Gini contends
that Darwin’s argument is one-sided and that it overlooks
how a mother who produces fewer offspring of the rarer
sex would thereby produce superior offspring of the more
common sex. This is correct, but it does not follow that the
evolutionary payoffs for investments that improve competi-
tive ability are symmetrical with respect to sex. Indeed, a
mother who improves the competitive ability of an offspring
of the rarer sex would, all else being equal, expect to have
a greater number of descendants than would a mother
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who improves the competitive ability of an offspring of the
more-common sex. However, these issues would not become
clear until focus had shifted away from the sex ratio and
toward explicit consideration of parental expenditure in
relation to each sex.
publishing.org/journal/rstb
Phil.Trans.R.Soc.B

378:20210500
5. John Austin Cobb
It is in a virtually unknown paper, The problem of the sex-ratio by
‘J. A. Cobb’, published in 1914 in The Eugenics Review [21], that
an understanding of the rarer-sex effect was finally reached in
its more-or-less modern form, at least in relation to sexually
symmetrical modes of genetic inheritance. Despite making
some impact at the time, particularly upon R. A. Fisher (see
below), and being highlighted in the popular periodical The
Review of Reviews [22], this work rapidly faded into obscurity,
and appears to remain there. Even following its rediscovery a
quarter of a century ago by Edwards [9,23], Cobb’s paper has
not been cited in authoritative, book-length treatments of sex
allocation theory [24,25]—or indeed, according to Web of
Science and Google Scholar, by anyone else.

As no biographical information has previously been pub-
lished on the author of The problem of the sex-ratio, it may be
useful to give some details. John Austin Cobb (1866–1920;
figure 1d ) was born in Kent, England, and he attended Hai-
leybury College, Hertfordshire, from 1879 to 1884 [26,27].
He matriculated at the University of London in 1885 but
did not complete his studies [28], instead training as a solici-
tor and qualifying in 1889 [29]. He married in 1891 [30], and
thereafter lived on private means in Minneapolis, Minnesota
and then Richmond, Surrey. Although unaffiliated with any
academic institution, he published a number of research
articles between 1896 and 1914 in Nature [31,32], Biometrika
[33] and The Eugenics Review [21,34,35], on topics spanning
photography, statistics, the sex ratio and human fertility.

Cobb begins his account with a clear statement of the
basic principle of the rarer-sex effect [21, p. 161]:
If we take the sex-ratio at birth it appears at first sight that the
numbers of the sexes born will become equal. For if there are
more born of one sex, say, the male, a female will have a greater
chance of finding a mate than a male. There will be more mat-
ings, therefore, among the descendants of mothers of females
than amongst the descendant [sic] of mothers of males. The
mothers of females will therefore be better represented in the
third generation, and as their characteristic is assumed to be
inherited, there will be a tendency for the sex-ratio to diminish
until it reaches equality in numbers between the sexes at birth.
He then reiterates Gini’s insight that it is the sex ratio of new-
borns—not that of adults—that drives this action of natural
selection, such that any imbalance in the adult sex ratio
owing to higher mortality of one sex is irrelevant, and will
not lead to adjustment of the newborn sex ratio [21, pp.
161–162]:
If we assume that males and females are conceived in equal
numbers, a male at conception will have the same chance as a
female of eventually finding a mate. Now if males have a higher
death-rate when young the chance of mating of any male taken
at random from amongst all males conceived will not be dimin-
ished. For if one male dies his chance will vanish, but the chance
of the remaining males will be correspondingly increased.
Cobb then shifts attention away from the sex ratio to
explicitly consider the expenditure of parental resources in
relation to offspring of each sex. This provides an important
refinement in conceptualization of the strategy set, and
ushers in the more general problem of sex allocation as a
topic for evolutionary investigation. Specifically, Cobb
suggests that the slight male bias observed among newborns
in humans is—after all—an evolutionary consequence of
males suffering a greater incidence of childhood mortality,
such that the total cost of a son is lower than that of a daugh-
ter and, accordingly, a somewhat male-biased sex ratio at
birth may equalize the marginal returns from investment
into offspring of each sex. In his words [21, p. 162]:
If, however, the amount of food for the family is limited a mother
of boys will be able to provide for them more easily for a larger
proportion of them will die early and will therefore not require so
much food. This will tend to give an advantage to the brother or
sister of boys over the brother or sister of girls. A brother or sister
of boys will be less likely to be starved and more likely to grow to
maturity and to marry. He or she will have a tendency to produce
more males than a brother or sister of girls. The sex ratio will
therefore rise until the less expenditure attendant upon the
birth of a boy is balanced by the smaller chance a boy will
have of finding a mate.
Finally, Cobb makes a crucial advance concerning the payoff
function. He points out that—even for a sexually symmetrical
mode of genetic inheritance—simply calculating a mother’s
expected number of grandchildren provides an inadequate
means of evaluating her sex-allocation strategy if there is a
sex difference in the average age of becoming a parent [21,
pp. 162–163]:
If when the population is increasing a man selects his wife from
those born two years later than himself, it gives him a larger
number from whom to choose than if he took his wife from
those born the same year as himself, for the number of births
of girls increases from year to year. This, then, increases the
man’s chance of marrying and diminishes the woman’s. But
this biological advantage to the man is precisely balanced by
the fact that the time between the birth of father and son is
longer than that between mother and son. So the population
does not increase so rapidly on the male side as on the female.
The fact that a man marries later on the average does not there-
fore affect the probable number of the descendants of any male
taken at random at the time of conception.
That is, in this growing-population scenario, a mother who
adjusts her sex allocation in favour of sons will expect to
have a larger number of grandchildren but, as these are
expected to be born later than those that would have been
born to her daughters, they will represent a smaller fraction
of their own generation and hence contribute correspond-
ingly less to the ancestry of future generations. And it is
this asymptotic contribution to future generations—what
we today term ‘reproductive value’ [36–38]—that forms the
proper basis for the payoff function.

A discrepancy between the average age of mothers versus
fathers leads to more of the population’s reproductive value
residing with the sex that reproduces at an older age
[39,40], and this has implications for the action of sexually
antagonistic selection [41]. However, the total reproductive
value of newborn females is, as Cobb points out, equal to
that of newborn males—provided that the population has
attained a stable age distribution (box 1) [39]. Accordingly,
sex differences in age of parentage have no biasing effect on
the allocation of resources between sons versus daughters
that is favoured by natural selection.



Box 1. The mathematics of the rarer-sex effect.

Here I show how the unbeatable sex-allocation strategy may be expressed in terms of three measures of value—marginal
value, reproductive value and consanguinity—and recover the results given by Fisher [37] and Hamilton [42], respectively,
for diploid and male-haploid modes of inheritance. The present account is based on that of Frank [43], who provides a fuller
treatment.

Let a mother’s sex-allocation strategy—i.e. the proportion of her reproductive resources that she invests into the pro-
duction of sons versus daughters—be denoted by y, and the average sex-allocation strategy employed by mothers in the
population by �y. Let the reproductive success of the focal mother’s sons, expressed relative to the reproductive success of
the average mother’s sons, be denoted by M(y)/M(�y), where M is a monotonically increasing function of its argument. Simi-
larly, let the reproductive success of the focal mother’s daughters, expressed relative to the reproductive success of the
average mother’s daughters, be denoted by F(1− y)/F(1− �y), where F is a monotonically increasing function of its argument.
Then a small increase in the focal mother’s allocation of resources to sons would serve to increase her payoff if

M0(y)
M(�y)

cmpm .
F0(1� y)
F(1� �y)

cfpf,

and a small decrease in her allocation of resources to sons would serve to increase her payoff if

M0(y)
M(�y)

cmpm ,
F0(1� y)
F(1� �y)

cfpf,

where cm is the aggregate reproductive value of all newborn males, cf is the aggregate reproductive value of all newborn
females, pm is the consanguinity of mother and son, pf is the consangunity of mother and daughter, and a prime denotes
a derivative taken with respect to the function’s argument.

Accordingly, the unbeatable sex-allocation strategy y* satisfies

M0(y�)
M(y�)

cmpm ¼ F0(1� y�)
F(1� y�)

cfpf:

The unbeatable strategy y* is not generally independent of the shape of functions M and F. For example, if these functions
take power-law form M(y) = αya and F(1− y) = β(1− y)b with a, b≤ 1 then the unbeatable sex-allocation strategy is given by

y� ¼ acmpm
acmpm þ bcfpf

,

which may take any value between 0 and 1 given a suitable choice of values for a and b in scenarios in which mothers derive
payoff from both sons and daughters (i.e. cm pm, cf pf > 0)—see Frank [43] for more discussion. However, under certain sym-
metries in the M and F functions—for example, if they are both linear (i.e. a = b = 1 in the above power-law formulation) or if
they have the same rate of diminishing returns (i.e. a = b < 1)—then the unbeatable sex-allocation strategy is given by

y� ¼ cmpm
cmpm þ cfpf

:

Under a diploid mode of inheritance, the aggregate reproductive value of newborn males is equal to that of newborn
females—provided that the population has attained a stable age distribution—and the consanguinity of mother and son is
equal to that of mother and daughter, and this recovers Fisher’s [37] prediction of equal investment into sons and daughters,

y� ¼ 1=2:

To see that the aggregate reproductive value of newborn males is equal to that of newborn females, consider a gene that is
chosen from the distant future and traced back to its ancestor in the present [40]. Denote: the probability that the ancestor is
male by s; the probability that the ancestor is female by t = 1 – s; the probability that the ancestor is newborn conditional upon
being male by u; the probability that the ancestor is newborn conditional upon being female by v; and the probability that
the ancestor of the gene in the previous time step was male by s0. The latter probability is given by s0 = s × (1/2 × u + 1 – u) +
t × 1/2 × v, because if the ancestor in the present is a newborn male there is a probability 1/2 that his gene derived from his
father in the previous time step and if he is not newborn then with certainty he was carrying the gene in the previous
time step, and if the ancestor in the present is a newborn female then there is a probability 1/2 that her gene derived
from her father in the previous time step. A stable age distribution implies s0 = s, and rearranging obtains su = tv, i.e. the
probability that the gene’s ancestor is a newborn male is equal to the probability that it is a newborn female.

Owing to the sexual symmetry of diploid inheritance it is intuitive that the consanguinity of mother and son is equal to
that of mother and daughter. The consanguinity of mother and offspring—i.e. the probability that a gene drawn from a par-
ticular locus from the mother and a gene drawn from the same locus from the offspring are identical by descent—is given by
1/2 × (1/2 + 1/2 × f ) + 1/2 × f = (1 + 3f )/4, where f is the consanguinity of mating partners, and irrespective of the sex of the
offspring [44].

Under a male-haploid mode of inheritance, the aggregate reproductive value of newborn females is twice that of newborn
males—provided that the population has attained a stable age distribution. To see this, note that repeating the same pro-
cedure as above obtains s0 = s × (1 – u) + t × 1/2 × v under male haploidy, as newborn males receive all of their genes from
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their mothers, and setting s0 = s and rearranging obtains tv = 2su [40]. Moreover, the consanguinity of mother and son may
differ from that of mother and daughter: for daughters, this is (1 + 3f )/4 as before; but for sons it is 1/2 × 1 + 1/2 ×
f = (1 + f )/2. Making these substitutions yields Hamilton’s [42] prediction for the unbeatable sex-allocation strategy,

y� ¼ 1þ f
2þ 4f

:

In an outbred population ( f = 0) the unbeatable sex-allocation strategy under male haploidy is to invest equally into sons
and daughters, because although newborn females have twice the reproductive value of newborn males, the consanguinity
of mother and son is twice that of mother and daughter, leading to no overall bias in valuation. In a chronically inbred popu-
lation ( f = 1) the unbeatable sex-allocation strategy is to invest twice as much into daughters as sons, as here mothers are
equally consanguinous with son and daughter, and hence the higher reproductive value of newborn females favours
twice as much investment into daughters as into sons. Note that inbreeding will often be associated with additional fitness
consequences—such as local competition for mates—that have not been considered here but are also expected to modulate
the unbeatable sex-allocation strategy [1].
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6. Ronald Aylmer Fisher
Cobb’s work had an enormous influence on Ronald Aylmer
Fisher (1890–1962 [45]; figure 1e), who is traditionally—
though incorrectly—credited as the originator of the theory
of the rarer-sex effect [46,47]. Fisher is explicit in crediting
Cobb’s 1913 paper on Human fertility [34] as providing the
inspiration for his own theory of the decline of civilizations,
articulated in the latter chapters of his 1930 book The genetical
theory of natural selection [37]. And although he does not expli-
citly credit Cobb for the sex-ratio argument that he gives
earlier in the same book, it is beyond reasonable doubt that
Fisher was aware of Cobb’s sex-ratio paper. Edwards [9] com-
piles convincing circumstantial evidence, including, for
example, the fact that Cobb’s paper appeared in the same jour-
nal issue as two book reviews contributed by Fisher [48,49].

Fisher’s major contribution to understanding of the
rarer-sex effect is to give it a more formal foundation by pro-
viding a proper mathematical account of—and name for—the
concept of reproductive value. This is done firstly in an article
on The actuarial treatment of official birth records published in
1927 in The Eugenics Review [36], and also in The genetical
theory of natural selection [37, pp. 27–30], again without
making any reference to Cobb’s work. Fisher then gives
what is essentially Cobb’s formulation of the rarer-sex
effect—with one crucial difference [37, pp. 142–143]:
Let us consider the reproductive value of these offspring at the
moment when this parental expenditure on their behalf has just
ceased. If we consider the aggregate of an entire generation of
such offspring it is clear that the total reproductive value of the
males in this group is exactly equal to the total value of all the
females, because each sex must supply half the ancestry of all
future generations of the species. From this it follows that the
sex ratio will so adjust itself, under the influence of Natural Selec-
tion, that the total parental expenditure incurred in respect of
children of each sex, shall be equal; for if this were not so and
the total expenditure incurred in producing males, for instance,
were less than the total expenditure incurred in producing
females, then since the total reproductive value of the males is
equal to that of the females, it would follow that those parents,
the innate tendencies of which caused them to produce males
in excess, would, for the same expenditure, produce a greater
amount of reproductive value; and in consequence would be
the progenitors of a larger fraction of future generations than
would parents having a congenital bias towards the production
of females. Selection would thus raise the sex-ratio until the
expenditure upon males became equal to that upon females.
Fisher’s key innovationhere is to specify that the parental expen-
diture upon each sex will be equalized by natural selection.
Cobb had made no such claim and, indeed, it is not generally
true. The equal-expenditure result hinges upon the implicit
assumption that when total parental expenditure upon each
sex is equal then a further small investment into sons would
yield the same share of their class’s total reproductive value as
would the same small investment into daughters—such that
the equality of the class reproductive values ensures that the
overall returns to the parent are the same irrespective of into
which sex the investment is made (box 1) [43]. But this need
not be the case.

For example, it might be that a son’s expected mating suc-
cess exhibits such strongly diminishing returns on parental
expenditure that a further increment of investment would not
appreciably improve his reproductive success, whereas
the same additional investment into a daughter might mean-
ingfully increase her fecundity, making the latter a better
investment even if the overall sex allocation of the population
is already somewhat female-biased. Such complexities are
more likely to arise in taxa exhibiting smaller broods
and extended parental care—such as birds and mammals—
whereby adjustments to sex allocation are more likely to
involve differences in provisioning rather than an alteration
of sex ratio, and are more reasonably neglected in taxa in
which a mother’s numerous offspring each receive standard
provisionment and are scattered shortly after conception—as
for example in many insects—whereby the returns on
investment into each sex might be more-or-less linear [50].
7. William Donald Hamilton
The final fundamental contributions to understanding of the
rarer-sex effect were made by William Donald Hamilton
(1936–2000 [51]; figure 1f ), who showed how consanguinity
enters into the payoff function and developed the concept
of the ‘unbeatable’ strategy. As discussed above, Gini had
pointed out that previous treatments of the rarer-sex effect
implicitly assumed biparental inheritance such that there is
no fundamental asymmetry in the value of sons and daugh-
ters in the absence of a population-level bias in sex allocation,
and had worked out the sex-ratio consequences of uniparen-
tal inheritance that leads a parent to value only offspring of
the corresponding sex. But beyond these qualitative extremes,
it was unclear how the logic of the rarer-sex effect would play
out under sexually asymmetrical modes of inheritance—such
as male haploidy, as exhibited by ants, bees and wasps—in
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which sons and daughters should both appear within a
mother’s payoff function but in a potentially asymmetrical
way. And although from its inception in the work of
Darwin the rarer-sex effect had a game-theoretic flavour,
Hamilton was the first to explicitly make this point.

Hamilton’s contributions to sex-allocation theory grew out
of hismore basicwork on inclusive fitness, inwhich he showed
that natural selection is expected to lead organisms to appear as
if they are maximizing the overall reproductive success of their
relatives—including themselves—with each increment or
decrement being weighted by the degree of consanguinity
between the actor and corresponding recipient [52]. Here, con-
sanguinity refers to the probability that genes drawn from two
parties—from the same locus—are identical by descent; the
ratio of the consanguinity of actor and recipient to the consan-
guinity of the actor to herself defines thewell-known coefficient
of relatedness [44]. Hamilton’s first remarks on the evolution of
the sex ratio appear in part II of his 1964 paper The genetical evol-
ution of social behaviour [53], and here he seems to correctly
grasp the solution in outline, namely that a mother should
weight each of her newborns according to her consanguinity
to each and also their reproductive values, these two measures
of value combining in amultiplicativeway (box 1). However, in
his first attempt to calculate these quantities as they apply to
male-haploid species, he appears to make two errors, and
this leads him to derive the unusual prediction of a sex ratio
in which females outnumber males by a factor ϕ = (1 +√5)/
2≈ 1.618—that is, the ‘golden ratio’, which has been celebrated
for its aesthetically pleasing properties since antiquity.

Hamilton’s first error concerns his calculation of consangui-
nity [54]. In an outbred, male-haploid population the
consanguinity of mother and son is double that of mother
and daughter because whereas males develop from unferti-
lized eggs and thereby derive all of their genes from their
mothers, females develop from fertilized eggs and thereby
derive half of their genes from each parent in the usual way
(box 1). However, Hamilton [53] employs a faulty method for
calculating consanguinity, which involves assigning haploid
males a second ‘cipher’ gene at each locus, so that he can
treat them as if they are diploid, and this leads him to calculate
the consanguinity of mother and son at half of its true value.

This consanguinity error alone does not explain how
Hamilton arrives at a sex ratio in proportion to the golden
ratio, so it appears that he also makes a further error, in his
calculation of reproductive value. In male-haploid species,
the probability that a gene drawn from a distant future gen-
eration traces its origin back to a newborn female in the
present generation is twice the probability that it traces
back to a newborn male, independently of the sex ratio,
and hence the aggregate reproductive value of the newborn
females is twice that of the newborn males (box 1) [40]. Yet,
had Hamilton used these correct reproductive values with
the incorrect consanguinities he would have arrived at a sex
ratio in which females outnumber males 2 to 1. In order to
recover a sex ratio of ϕ females for every male, it appears
that Hamilton is calculating the reproductive value of the
females as being ϕ times that of the males.

It is unclear how Hamilton obtains these erroneous repro-
ductive values. One possibility is that he is attempting to
calculate the asymptotic proportions of females and males in
a genealogy within which each female descendant gives rise
to a single son and a single daughter and eachmale descendant
gives rise to a single daughter. In each successive generation
the number of females is given by consecutive Fibonacci num-
bers, with the number of males trailing one Fibonacci number
behind, and so in the long run their ratio converges upon ϕ [55].
Whatever the reason for the appearance of ϕ, Hamilton’s sex-
ratio prediction is repeated in the bestselling 2003 novel The
da Vinci Code [56, ch. 20], and must therefore be in the running
for the most widely read—albeit incorrect—quantitative result
in the history of evolutionary biology:
‘Ever study the relationship between females and males in a hon-
eybee community?’

‘Sure. The female bees always outnumber the male bees.’

‘Correct. And did you know that if you divide the number of
female bees by the number of male bees in any beehive in the
world, you always get the same number?’

‘You do?’

‘Yup. PHI.’

The girl gaped. ‘NO WAY!’.
In 1971, Hamilton [54] points out his error concerning the cal-
culation of consanguinity—though not his error concerning the
calculation of reproductive value, which he appears to silently
correct—and remarks that mothers in male-haploid species are
in fact favoured to employ an unbiased sex ratio because,
although at this equilibrium point daughters have twice the
reproductive value of sons, the consanguinity of mother and
son is twice that of mother and daughter. In 1972, he shows
his working and generalizes the result to allow for inbreeding,
which increases the consanguinity of mother and daughter
relative to the consanguinity of mother and son, and hence
favours a somewhat female-biased sex ratio (box 1) [42]. By
this time, he has also shown that inbreeding life-histories can
have consequences not only for consanguinity of daughters
and sons but also for fitness interactions between collateral
relatives, yielding a further selection pressure—termed ‘local
mate competition’—that moulds sex allocation in addition to
the basic rarer-sex effect [1].

In addition to establishing the role of consanguinity, Hamil-
ton also makes the first explicit link between the rarer-sex effect
and the theory of games, and develops the concept of the
‘unbeatable’ strategy as an evolutionary biology analogue of
the Nash equilibrium, in his 1967 paper Extraordinary sex
ratios [1]. Here he is building upon the work of Verner [57],
who—in 1965—had first applied the term ‘strategy’ to sex-
ratio evolution, and MacArthur [58] who—also in 1965—had,
in effect, first calculated the sex-ratio that was the best response
to itself, but struggled to articulate exactly what this rep-
resented. In particular, Hamilton points out that the rarer-sex
effect has a ‘game-like feature … in the sense of a play by the
individual against the population’ and that the resemblance
to the ‘theory of games… becomes accentuated as we proceed
into circumstances of local competition’ that take the form of
the n-player games studied by game theorists [1, p. 477].

And he analyses these various sex-ratio scenarios in an
explicitly game-theoretic manner, using differential calculus
(box 1). First, he mathematically describes the payoff—i.e.
relative contribution of ancestry to future generations—for
an individual who adopts a variant sex-ratio strategy in the
context of a population in which every other individual
adopts a given resident strategy. Second, he uses this payoff
function to determine whether variants with sex ratios
above or below the resident strategy enjoy a greater payoff
than does the resident itself, such that natural selection
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would act to favour these variants over the resident strategy.
And, third, he uses this information to determine which resi-
dent strategy cannot be beaten by any variant in this way,
yielding the unbeatable sex-ratio strategy.
ietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B
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8. Epilogue
The foregoing account of the historical development of under-
standing of the rarer-sex effect differs from some others that
have been given elsewhere. Traditionally, Fisher has been
identified as the originator of the rarer-sex principle [46,47],
though in the last quarter century there has been growing
acknowledgement that he was drawing upon the work of
others. Edwards [9] has highlighted the contributions of
Darwin and Düsing, though somewhat overstating the extent
to which their reasoning—which hinges upon the adult
sex ratio—lines up with modern understanding, and he has
drawn attention to thework of Gini and Cobb, though without
commenting upon some important aspects of their respective
contributions—such as the consequences of uniparental inheri-
tance and the fundamental importance of reproductive value.
Hamilton has been celebrated for his work on extraordinary
sex ratios, yet this has tended to overshadow his contribution
to the understanding of the unbiased sex ratio, particularly in
relation to male haploidy. Finally, I have passed over, without
comment, a number of celebrated works that do not appear to
have actually advanced understanding, such as Shaw & Moh-
ler’s 1953 paper The selective significance of the sex ratio [59], of
which the supposed innovation to calculate expected number
of grandoffspring had already been made 70 years earlier by
Düsing (cf. [9]) and superseded 39 years earlier by Cobb
(though it did help to bring Fisher’s account of the rarer-sex
effect to wider attention).

My account has made clear that game-theoretic thinking
was being productively applied within evolutionary biology
throughout the century preceding the 1973 publication of
Maynard Smith and Price’s The logic of animal conflict [5].
Indeed, the game-theoretic treatment of the rarer-sex effect
was itself a crucial motivator for Maynard Smith and
Price’s investigation of ‘evolutionarily stable’ strategies, as is
apparent not only from their explicit acknowledgement of
MacArthur’s and Hamilton’s sex-ratio work but also
from G. R. Price’s interchangeable use of the terms ‘unbeata-
ble’ and ‘stable against evolutionary perturbation’ in his
unpublished 1968 manuscript Antlers, intraspecific combat,
and altruism [60], which was to form the basis of his later
publication with Maynard Smith.

Following the elucidation of the fundamental driver of
selection in relation to sex allocation—the rarer-sex effect—
and the incorporation of additional selective drivers, such as
local mate competition, which greatly expanded the scope for
empirical testing of comparative predictions, sex-allocation
has flourished as a topic of evolutionary investigation [24,25].
This owes in large part to a tight interplay of theoretical
and empirical research, which has been facilitated by the
embrace of strategic, game-theoretic approaches [43,61,62]
that dispense with population-specific—and largely unknow-
able—genotypic details in favour of economic analysis of life-
history decisions that can be readily compared and contrasted
between populations and taxa.Moreover, the relative ease of its
measurement, the relatively well-understood nature of its
central trade-off and the relatively strong connection that it
has with differential evolutionary success has meant that the
sex ratio has yielded arguably the best quantitative, empirical
support for Darwinian adaptation [25].
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