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Conflicts of interest abound not only in human affairs but also in the biologi-
cal realm. Evolutionary conflict occurs over multiple scales of biological
organization, from genetic outlawry within genomes, to sibling rivalry
within nuclear families, to collective-action disputes within societies.
However, achieving a general understanding of the dynamics and conse-
quences of evolutionary conflict remains an outstanding challenge. Here,
we show that a development of R. A. Fisher’s classic ‘geometric model’ of
adaptation yields novel and surprising insights into the dynamics of evol-
utionary conflict and resulting maladaptation, including the discoveries
that: (i) conflict can drive evolving traits arbitrarily far away from all parties’
optima and, indeed, if all mutations are equally likely then contested traits
are more often than not driven outwith the zone of actual conflict (hyper-
maladaptation); (ii) evolutionary conflicts drive persistent maladaptation
of orthogonal, non-contested traits (para-maladaptation); and (iii) modular
design greatly ameliorates conflict-driven maladaptation, thereby facilitating
major transitions in individuality.
1. Background
Organisms are classically viewed as striving to maximize their fitness, with
natural selection adaptively optimizing all their traits according to this purpose
[1,2]. Here, a trait is any aspect of the world that is under the individual’s con-
trol, whether it be part of the individual’s body or behaviour, or an artefact like
a spider’s web, with the sum of all traits defining the individual’s phenotype
[3]. A simple, yet powerful, approach to investigating the dynamics of evol-
utionary adaptation was introduced by Fisher [1] in 1930. His geometric
model of adaptation conceptualizes the phenotype at any moment in time as
a point in multi-dimensional trait space, identifies the optimal phenotype as
a different point in this multi-dimensional space and interprets mutation as a
random leap in phenotype space, with the mutant phenotype being ben-
eficial—and therefore supplanting the resident phenotype—if it lies closer to
the optimum (figure 1a). Consideration of the resulting evolutionary dynamics
has yielded detailed predictions concerning many aspects of the adaptive
process, which often enjoy a strong quantitative fit with empirical data [4–14].

However, in many situations the evolutionary interests of the individual may
come into conflict with those of other individuals and, indeed, with the interests
of other biological entities. Individuals may be embroiled in evolutionary
conflicts with their mates [15,16], offspring [17], parents [17], siblings [18] and
other social partners [19], including those belonging to other species [20,21]. In
addition, the interests of a whole social group may be in conflict with those of
its constituentmembers, as in the case of public-goods dilemmas and the tragedy
of the commons [22]. And, within an individual’s genome, different genes may
come into conflict with the individual and with each other, for example owing to
differences in mode of transmission [23–25]. These evolutionary conflicts clearly
pose a barrier to adaptation, and conflict-driven maladaptation has been impli-
cated in a wide range of human pathologies, including growth and fertility
disorders and childhood cancers [26–28].
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Figure 1. Fisher’s geometric model of adaptation, extended to encompass
conflicts of interest. (a) In the original formulation of Fisher’s model [4], a
mutation is beneficial (i) if it takes the phenotype (disc) closer to the opti-
mum (a), and is deleterious (ii) if it takes the phenotype further from the
optimum. (b) In the present formulation, there are two parties with two dis-
tinct optima (a and b), and so a mutation may be beneficial for one party
but deleterious for the other (i and iii), beneficial for both parties (iv) or
deleterious for both parties (ii).
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2. Results
To investigate the evolutionary dynamics of adaptation and
maladaptation in the context of conflicts of interest, we alter
a key assumption of Fisher’s geometric model to consider
that the phenotype is controlled by more than one biological
agent and that these agents have different agendas
(figure 1b). Specifically, we focus on scenarios in which there
are two different optima, a and b, in the multi-dimensional
trait space, each corresponding to a different agent (or bloc
of agents) that exerts some control over the phenotype. We
assume that every point in space is mutationally connected
to every other, and that with an independent probability p
for each mutation, this mutation is considered to be governed
by optimum a, such that it is beneficial if and only if it brings
the phenotype closer to optimum a, and with probability 1− p
the mutation is instead governed by optimum b, such that it is
beneficial if and only if it brings the phenotype closer to
optimum b. We assume that the phenotype space is finite,
but allow this to be of arbitrarily large size (see electronic
supplementary material, §S1 for full details).

This geometric approach allows us to explicitly quantify
the intensity of evolutionary conflict at any point in the
multi-dimensional trait space, which we define as the prob-
ability that the next beneficial mutation—whether it be
governed by optimum a or optimum b—is beneficial only
for the governing agent and is deleterious for the other
agent. We find that the intensity of conflict is maximal and
equal to 1 when the phenotype lies on the line segment
between the two optima, because here all mutations that
take the phenotype closer to optimum a necessarily move it
further away from optimum b, and vice versa, and the inten-
sity of conflict is lower for all points in trait space outwith this
line segment, as here it is possible for a mutation that takes
the phenotype closer to optimum a to also take the pheno-
type closer to optimum b, and vice versa (figure 2a; see
electronic supplementary material, §S2).

In addition to quantifying conflict, our model enables us
to explicitly track the evolutionary dynamics of the conflicted
phenotype. In contrast with Fisher’s classic single-optimum
formulation of the geometric model, in which the phenotype
moves progressively closer to the optimum with each
mutation-invasion event, the conflict of interests in our
two-optima version of the geometric model leads to persist-
ent maladaptation and sustained phenotypic fluctuation
(figure 2b; see electronic supplementary material, §S3).
Specifically, as the phenotype moves closer to one fitness
optimum, a subsequent mutation governed by the other opti-
mum is liable to move the phenotype away in the other
direction, such that the phenotype never settles upon a
fixed evolutionary endpoint.

Moreover, within the context of a one-dimensional pheno-
type space, while it might be supposed that the phenotype
would oscillate within the ‘battleground’ [29] interval
bounded by the two optima, we find instead that the conflict
of interests frequently leads to the phenotype being driven
outwith this interval, representing ‘hyper-maladaptation’
that is in neither party’s evolutionary interest. The phenotype
can escape from the battleground interval because this muta-
tional step may bring it closer to one of the optima, and the
distance from either optimum may be increased to an arbitra-
rily large extent by a succession of mutations that ‘leap-frog’
from the far side of one optimum to the far side of the other,
and so on (figure 2c; see electronic supplementary material,
§S3). Indeed, if all mutations are equally likely, then irrespec-
tive of the location of the current phenotype or the balance of
power between the conflicting agents, the next beneficial
mutation is at least as likely to yield a phenotype that lies
outwith the zone of conflict as it is to yield a phenotype
that lies between the two optima (figure 2d; see electronic
supplementary material, §S3).

Furthermore, when there is more than one trait dimension,
we find that the conflict of interests spills over from the con-
flicted trait to drive persistent maladaptation in orthogonal
traits with respect to which no conflict actually exists
(figure 3a,b; see electronic supplementary material, §S3). If
all mutations are equally likely, then in the long run the
extent of such ‘para-maladaptation’ in each orthogonal
dimension is directly proportional to the distance between
the two optima within the conflict dimension, and we find
that the degree of maladaptation—i.e. the average Euclidean
distance of the phenotype from the governing optimum—
within each dimension is approximately constant with respect
to the dimensionality of the phenotype space (figure 3c). As a
consequence of this, the overall degree of maladaptation—i.e.
the average Euclidean distance of the phenotype from the
governing optimum across all dimensions simultaneously—
increases with the dimensionality of the phenotype space (in
particular, it scales approximately with the square root of
the number of phenotypic dimensions; figure 3d ). This consti-
tutes a conflict-driven cost of complexity that is absent in
Fisher’s original model. Even though the conflict arises in
relation to a single phenotypic dimension, its maladaptive
consequences are magnified as the phenotype becomes
more complex, such that conflicts pose a strong barrier to
precision fine-tuning of complex adaptations.

This conflict-driven para-maladaptation results from the
assumption that single-mutational events may simul-
taneously affect multiple traits. Such pleiotropy is prevalent
in Fisher’s classic formulation of the geometric model. The
opposite of pleiotropy is modularity whereby, in its extreme
form, each mutation represents a phenotypic transformation
along a single-trait axis without perturbing the location of
the phenotype along any other axis [14]. Incorporating muta-
tional modularity into our model, we find that the phenotype
moves monotonically closer to the optimum in every
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Figure 2. Evolutionary dynamics in one dimension and conflict-driven maladaptation. (a) The degree of conflict is maximal between the two optima and declines
monotonically outwith this interval. (b) Conflict drives never-ending fluctuation in the phenotype both within and outwith the interval between the two optima
(shown here is a single numerical simulation run for 30 invasion events). (c) The phenotype can escape the interval between the optima by leap-frogging between
the far sides of each optimum, to become arbitrarily distant from either. (d ) At equilibrium, a probability density emerges in which the phenotype is at least as
likely to be found outwith the interval between the two optima as within it (shown here is a single numerical simulation run for 1.5 × 105 invasion events). For the
purpose of illustration, (a,b,d ) assume that all mutations are equally likely and (b,d) make use of Fisher’s assumption that beneficial alleles are certain to proceed to
fixation (see electronic supplementary material, §§S1.3 and S2 for full details).
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unconflicted trait dimension, such that in the long run
these dimensions achieve optimality and can be discarded
from the analysis of evolutionary dynamics (figure 4a;
see electronic supplementary material, §S6). This means
that the equilibrium state exactly recovers that of a lower-
dimensionality model that neglects the unconflicted trait
dimensions (figure 4b). Consequently, we find that modular-
ity abolishes the conflict-driven cost of complexity and
thereby facilitates complex adaptation (figure 4c,d ).

The extensive maladaptation associated with evolution-
ary conflict may mean that both parties are worse off on
average than they would have been had they compromised
and agreed to settle on the same mutually sub-optimal phe-
notype, in a way that is reminiscent of mutually deleterious
outcomes in the theory of games [30,31]. In the pleiotropy
scenario considered above, assuming all mutations are
equally likely and that the power of the two agents is equally
balanced, we find that the expected distance of the phenotype
from each party’s optimum is always greater than half the
distance between the two optima (figure 3d ), meaning that
both parties would be better off splitting the difference and
agreeing to aim for the midpoint between their two optima
rather than persist in engaging in mutually deleterious con-
flict. And, for all scenarios with dimensionality 2 or higher,
the expected distance of the phenotype from each party’s
optimum is actually greater than the distance between the
two optima (figure 3d ), such that each party would actually
be better off allowing the phenotype to go to their adversary’s
optimum than to engage in the conflict. However, these
results concern the expected degree of maladaptation
that emerges in the long run, and in the short term neither
party is favoured to relinquish control of the phenotype
as this would always tend to make them worse off with
respect to the very next evolutionary step (see electronic
supplementary material, §S9).

So far, we have assumed that an agent considers amutation
to be beneficial if it brings the phenotype closer to their opti-
mum. However, our framework readily extends to scenarios
in which the agent considers a mutation to be beneficial if it
takes the phenotype further away from their pessimum—this
being the point in trait space at which the agent’s agenda is
most poorly realized [1]. In the non-conflict scenario with
only one agent and one corresponding pessimum, which was
briefly considered by Fisher [1], the probability of the pheno-
type remaining close to the pessimum trivially tends to zero
as time tends to infinity. By contrast, in the conflict scenario
with two agents having different pessima, there remains a
substantial probability of the phenotype remaining close to
each pessimum in the long run, provided that the two agents
also disagree as to which is the least-worst phenotype (see
electronic supplementary material, §§S7 and 8).
3. Discussion
We have shown that evolutionary conflicts of interest pose a
major barrier to the process of adaptation. Conflicts of inter-
est not only destroy the asymptotic approach towards
adaptive perfection described by Fisher’s original formu-
lation of the geometric model of adaptation, but may also
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Figure 3. Evolutionary dynamics in multiple dimensions and the conflict-driven cost of complexity. (a) Conflict drives never-ending fluctuation in the phenotype in
both conflicted and non-conflicted traits, resulting in substantial sub-optimality, including in traits for which there is no actual conflict (shown here is a single
numerical simulation run in two dimensions for 40 invasion events). (b) At equilibrium, there is substantial maladaptation even in trait dimensions in which conflict
does not exist (shown here is the probability density of invasion events corresponding to a single numerical simulation run in two dimensions for 3 million invasion
events). (c) The extent of maladaptation in each dimension is approximately constant with respect to the dimensionality of the phenotype space (each dot corre-
sponds to the endpoint after 100 invasion events, averaged over 500 numerical simulation replicates; measurements are in units of the distance between optima).
(d ) Accordingly, the overall maladaptation in all dimensions scales approximately with the square root of the dimensionality of the phenotype space, such that
conflict induces a cost of complexity that inhibits precision fine-tuning of complex adaptation (each dot corresponds to the endpoint after 100 invasion events,
averaged over 500 numerical simulation replicates; measurements are in units of the distance between optima). For the purpose of illustration, (a)–(d )
assume that all mutations are equally likely and also make use of Fisher’s assumption that beneficial alleles are certain to proceed to fixation (see electronic
supplementary material, §§S1.3 and S5 for full details).
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drive the phenotype outwith the battleground into realms
that are mutually agreed to be deleterious to fitness, includ-
ing into orthogonal phenotypic dimensions within which
no conflict actually exists. These results contrast with those
of a recent simulation analysis [32] of a similar model,
inspired by host–pathogen coevolution, in which the pheno-
type space was limited to the one-dimensional interval
between the two optima, which understated the scope for
hyper-maladaptation and para-maladaptation. Our finding
regarding the propensity for conflict to drive maladaptation
in relation to non-conflicted traits has been previously
emphasized by Wilkins [33], but for a different reason: his
model assumes particular pleiotropic relationships between
traits such that optimization in one trait dimension necess-
arily drives maladaptation in others, whereas our model
requires no such assumption and has para-maladaptation
arising for purely statistical reasons. We have described a
new conflict-driven cost of complexity and have shown that
this increases with the dimensionality of the phenotype
space, analogous to how higher dimensionality is expected
to impede adaptation in non-conflict scenarios, including in
terms of slowness of approach to a single static optimum in
Fisher’s original formulation [1,7] and also in terms of persist-
ent maladaptation as a result of lineages experiencing a
perpetually shifting optimum owing to either environmental
change [34] or migration through a spatially heterogeneous
environment [35].

Our analysis pertains to true conflicts, whereby one opti-
mum governs the evolutionary trajectories of some mutations
and another optimum governs those of others—as for
example when maternally expressed genes at some imprinted
loci have different fitness interests from paternally expressed
genes at other imprinted loci [24]. Scenarios in which the
same mutation moves between different selective environ-
ments, and hence has an optimum that represents an
averaging of the selection pressures experienced across
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these different environments—as for example when a sexu-
ally antagonistic allele [36] finds itself carried sometimes by
females and sometimes by males—are occasionally referred
to in terms of ‘conflict’ but may be better conceptualized as
simply involving trade-offs [25]. For the purpose of describ-
ing equilibrium states, we have considered snap-shots of
the population at the moment at which new beneficial
mutations invade, which is appropriate if making predictions
about the archaeological record of evolutionary history laid
down in the genome, rather than during the intervals
between these invasion events, which would be appropriate
if making predictions as to current phenotypes in con-
temporary populations. However, this distinction does not
qualitatively affect any of our results (see electronic sup-
plementary material). For simplicity, we have focused on
the extremes of full pleiotropy (each mutation has random
effects in all dimensions) versus full modularity (each
mutation has a random effect in only one dimension),
though intermediate scenarios (correlations in mutational
effects across dimensions) [37,38] might also be of interest.
Finally, a key assumption of our analysis has been that
there are only two conflicting agents, and extension to three
or more adaptive agents—including with the potential for
coalition formation—represents an important avenue for
future investigation.

Ourmodel allows for asymmetries in agent control over the
phenotype, by specifying that each mutation that arises has an
independent probability p of being governed by one agent’s
agenda and probability 1− p of being governed by the other
agent’s agenda. Numerical investigation suggests that the
average degree of maladaptation is maximal when both
agents exert equal control over the phenotype (i.e. p =½) and
declines monotonically as one agent increasingly controls the
phenotype (i.e. p declines towards 0 or increases towards 1;
see electronic supplementary material, §S10). Accordingly,
we might expect conflicts to be particularly damaging—and
hence of biological and clinical importance—when they
occur between roughly evenly matched opponents, such as
maternal-origin genes and paternal-origin genes at imprinted
loci, which will in many cases be equally numerous within
the genome, and this might go some way to explaining the
severity of many imprinting-related disorders [26–28].
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Our analysis prompts a rethink of current understanding
on the link between conflicts of interest and major transitions
in evolution. It has long been recognized that a mismatch of
optima limits the ability for social groups to emerge as higher
levels of individuality in their own right, as for example
in the evolution of social-insect colony ‘superorganisms’
[39–41]. This has led to the suggestion that, where such tran-
sitions have occurred, the superorganism represents only that
portion of the social group’s phenotype that is free from
conflict, with the remainder of the phenotype being of a
non-superorganismal nature [42,43]. For example, a social-
insect superorganism is understood to include the aggregate
of the colony’s ‘resource acquisition’ traits, such as coopera-
tive foraging, over which there is expected to be little or no
conflict, and to exclude the colony’s ‘resource allocation’
traits, such as differential feeding of male versus female
brood, over which strong intra-colony conflict may occur
[42,43]. However, we have shown that conflict may drive
maladaptation even within conflict-free trait dimensions,
reducing the scope for superorganismality to emerge. We
have also shown that mutational modularity may provide a
solution to this problem, enabling optimization of conflict-
free traits independently of those for which there is a
mismatch between optima. Accordingly, we suggest that
modularity is a crucial—and previously overlooked—enabler
of major transitions in evolution.

Finally, our analysis provides new conceptual support for
the principle of the ‘veil of ignorance’ as a promoter of har-
mony within genomes and within insect and human
societies [44–48]. In particular, the suppression of information
concerning kin relationships between social partners has been
argued to boost overall levels of cooperation, but a recent
analysis [49] has shown that—all else being equal—this veil
of ignorance is just as capable of inhibiting cooperation or
having no impact at all. To the extent that such kinship infor-
mation modulates an agent’s agenda, as for example when
information about a gene’s parent-of-origin brings it into con-
flict with its homologue in a way that would not occur if both
genes were ignorant of their parent-of-origin, then suppres-
sion of this kinship information would tend to cause the
different optima to converge upon the same intermediate
trade-off. Our analysis reveals that, even if granting such
information to each agent and allowing them the opportunity
to move the phenotype towards their own divergent opti-
mum could potentially result in a higher fitness payoff, the
maladaptation arising from the ensuing conflict dynamics
may be so damaging as to mean that all agents would be
better off under the veil of ignorance.
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