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Gonçalo S. Faria

e-mail: gf43@st-andrews.ac.uk
Electronic supplementary material is available

online at https://dx.doi.org/10.6084/m9.

figshare.c.4334147.

& 2019 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
The social evolution of sleep:
sex differences, intragenomic conflicts
and clinical pathologies
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Sleep appears to be essential for most animals, including humans. Accordingly,

individuals who sacrifice sleep are expected to incur costs and so should only

be evolutionarily favoured to do this when these costs are offset by other

benefits. For instance, a social group might benefit from having some level of

wakefulness during the sleeping period if this guards against possible threats.

Alternatively, individuals might sacrifice sleep in order to gain an advantage

over mate competitors. Here, we perform a theoretical analysis of the social

evolutionary pressures that drive investment into sleep versus wakefulness.

Specifically, we: investigate how relatedness between social partners may

modulate sleeping strategies, depending upon whether sleep sacrifice is selfish

or altruistic; determine the conditions under which the sexes are favoured to

adopt different sleeping strategies; identify the potential for intragenomic

conflict between maternal-origin versus paternal-origin genes regarding an

individual’s sleeping behaviour; translate this conflict into novel and readily

testable predictions concerning patterns of gene expression; and explore the

concomitant effects of different kinds of mutations, epimutations, and unipar-

ental disomies in relation to sleep disorders and other clinical pathologies.

Our aim is to provide a theoretical framework for future empirical data and

stimulate further research on this neglected topic.
1. Introduction
Sleep—defined as a reversible state of behavioural inactivity, elevated arousal

threshold, and homeostatic regulation [1,2]—has been found to occur in all

animal species that have been adequately studied [3,4]. Several non-exclusive

hypotheses have been offered as to the biological function of sleep, including

energy allocation into physiological activities that cannot be performed during

the day, adaptive inactivity when activity is costly, metabolite clearance from the

brain, maturation of the nervous system during ontogeny, memory consolidation,

and synaptic homeostasis [5] (electronic supplementary material, table S1).

Given the apparently important benefits of sleep, individuals who sacrifice

sleep would be expected to incur significant costs and, indeed, lack of sleep is

known to cause or exacerbate a very wide range of health problems, ranging

from cardiovascular diseases [6] and type 2 diabetes [7] to psychological distress

[8] and cancer [9]. From an evolutionary perspective, sacrifice of sleep will only

have been favoured provided that there are substantial compensating benefits.

For instance, a social group may benefit from having its members waking up at

different times throughout their sleeping period if this helps to protect the

group from potential dangers [10,11]. Alternatively, individuals might sacrifice

sleep to gain an advantage over their mate competitors [12–14]. In both of

these scenarios, individuals who give up opportunities to sleep may have an
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important impact on the survival and mating success of their

social partners, making sleep an important aspect of an

individual’s social behaviour.

However, at a fundamental level, the social evolutionary

pressures that have shaped investment into sleep versus wake-

fulness remain entirely obscure. It is not even clear whether

sacrificing sleep is a relatively altruistic activity—incurring

costs to the individual and yielding benefits to social part-

ners—or relatively selfish—yielding benefits to the individual

at a cost to their social partners. Moreover, the distinction

between altruistic versus selfish sleep sacrifice could poten-

tially explain sex differences in sleep schedules and modulate

conflicts of interest between an individual’s maternal- and

paternal-origin genes over the individual’s investment into

sleep versus wakefulness. Such intragenomic conflict would

be expected to underpin a range of medical disorders and

pathologies in relation to the biology of sleep.

Here, we investigate under which circumstances individ-

uals are favoured to invest more time into sleep versus

wakefulness, with a focus on individuals’ social environment,

and how that may affect gene expression and explain sleep

pathologies. Methodologically, we use a personal fitness

approach to kin selection [15,16], the results of which analysis

may be interpreted in terms of inclusive fitness [17]. First, we

analyse how an individual’s sleep schedule may be modulated

by the degree of genetic relatedness to their social partners, pro-

viding a contrast between altruistic versus selfish sacrifice of

sleep. Second, we explore the possibility for sex-specific social

evolutionary pressures—arising from sex differences in related-

ness between social partners and the associated benefits of

sleep sacrifice—to drive sex-specific sleeping schedules. Third,

we investigate whether there is potential for intragenomic con-

flict to occur between an individual’s maternal-origin versus

paternal-origin genes over the investment that the individual

makes into sleep versus wakefulness. Fourth, we use the ‘loud-

est voice prevails’ principle [18] to translate such conflict into

readily testable predictions concerning patterns of gene

expression, specifically ‘genomic imprinting’. Finally, we

show that these patterns of gene expression lead to readily tes-

table predictions concerning the effects of different kinds of

mutations, epimutations, and uniparental disomies on sleep

disorders and other pathologies. As these predictions relate lar-

gely to data that remain to be collected, our overall aim is to

provide a theoretical framework for future empirical work

and to stimulate research activity on this neglected topic.

2. Is sleep selfish or altruistic?
Natural selection favours those individuals that pass on more

copies of their genes to future generations [19,20]. According

to the theory of inclusive fitness, an individual may achieve

this either by increasing their own reproductive success

(direct fitness) or by increasing the reproductive success of

other individuals with whom they share genes in common

(indirect fitness) [15,21]. Hamilton’s rule [15,21–23] provides

an encapsulation of this logic: a social behaviour will be

favoured by natural selection so long as 2C þ Br . 0, where

C is the loss of reproductive success incurred by the actor, B
is the gain in reproductive success by the actor’s social partners,

and r is the genetic relatedness of the actor to their social part-

ners. This is an extremely general result, that holds irrespective

of whether the genetical trait varies in a continuous or discon-

tinuous manner, whether selection is weak or strong, whether
genes interact additively or nonadditively, and so on (reviewed

by [17]). If the social behaviour stabilizes at an intermediate

evolutionary optimum then this must occur when the direct

and indirect fitness effects exactly cancel each other out (2C
þ Br ¼ 0; note that this is true even if the cost and benefit of

the social behaviour change over evolutionary time). This

means that the behaviour must be either altruistic (C . 0 and

B . 0) or selfish (C , 0 and B , 0) at equilibrium [15,24,25].

Consider an individual who is genetically predisposed to

having relatively more sleep. If this leads to an increase in

their own reproductive success (C , 0) and a decrease in

their social partners’ reproductive success (B , 0), then this

sleep strategy may be described as selfish and, conversely,

individuals who tend to sacrifice sleep may be described as

behaving altruistically. An example of such a scenario is

when individuals may choose to sacrifice sleep in order to

protect their group from threats during the night, such as sur-

prise attacks from other groups or predators. The genetic

relatedness of group mates then determines how much sleep

an individual should be favoured to sacrifice in order to protect

their group from such dangers. To illustrate such a scenario,

we incorporate between-group dispersal into Haldane’s [26]

classic ‘tribe splitting’ model of human altruism (see electronic

supplementary material for details), revealing that a higher rate

of dispersal of individuals between groups, which leads to

lower relatedness among group mates, incentivises individuals

to devote more time to sleep (figure 1a and electronic

supplementary material, figure S1a).

Conversely, if an individual who sleeps relatively more

thereby incurs a loss of reproductive success (C . 0) and pro-

vides a benefit to their social partners (B . 0), then they can

be said to be behaving altruistically and, conversely, an individ-

ual who has a tendency to sacrifice sleep is behaving selfishly.

An example of such a scenario is when individuals may choose

to sacrifice sleep in order to pursue mating opportunities, and

thereby reduce mating opportunities for their social partners.

Again, relatedness between group mates is expected to modu-

late how much time an individual should devote to sleep in

such a scenario, but in the opposite direction from before. Turn-

ing again to the tribe-splitting model for an illustration, we

reveal that as the rate of individual dispersal increases—and,

consequently, the degree of relatedness among group members

decreases—individuals are favoured to sleep less (figure 1b and

electronic supplementary material, figure S1b).

So is sleeping selfish, or is it altruistic? This question

remains to be answered due to a lack of scientific investigation

on how genetic relatedness modulates sleep. With respect to

the above scenarios, several studies have shown how predation

[27–37] and sexual competition [12–14] modulate the sleep

schedule of several species. Moreover, Capellini et al. [38]

report that total duration of sleep across mammals is lower

when individuals are more likely to sleep in a group, which

they interpreted as either due to individuals being able to

sleep more deeply—and hence not requiring such long periods

of sleep—or alternatively owing to time invested in social inter-

action leaving less time for sleep. In humans, selfish personality

traits have been shown to correlate with late sleep onset [39]

and short-term mating success [40]. To our knowledge, the

potential of genetic relatedness to modulate sleep in all of

those scenarios remains to be investigated, and a comparative

approach—taken across populations or species—may provide

a more definitive means of assessing whether sleeping more is

a selfish or an altruistic behaviour.
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Figure 1. How much an individual should sleep depends on the relatedness between the individuals in a group. When individuals sacrifice sleep in order to remain
alert to dangers which may befall the group (a), individuals sacrifice more sleep when relatedness is higher, which is the case when female dispersal is lower. When
individuals sacrifice sleep in order to gain an advantage over their mate competitors (b), individuals sacrifice more sleep when relatedness is lower, which is the case
when female dispersal is higher. The following parameter values were used for both panels: male dispersal rate dm ¼ 0; budding dispersal rate dB ¼ 1; number of
adult females nf ¼ 4; number of adult males nm ¼ 4; minimum level of sleep m ¼ 0.05; and benefits of sleeping throughout the night bf ¼ bm ¼ 1. Addition-
ally, in (a) the level of a threat is a ¼ 1 and the mating opportunities that females and males can obtain through sleep sacrifice is cf ¼ cm ¼ 0, while in (b) the
level of a threat is a ¼ 0 and the mating opportunities that females and males can obtain through sleep sacrifice is cf ¼ cm ¼ 1. Here, we consider female-biased
dispersal—see electronic supplementary material, figure S1 for male-biased dispersal.
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3. Sex differences in sleeping behaviour
Above we have shown that sleep is expected to be modulated

by its impact on the reproductive success of the individual and

the individual’s social partners. However, the components of

direct (2C) and indirect (Br) fitness are liable to be different

for females and males, and this suggests that females and

males may be favoured to adopt different sleep schedules.

If individuals sacrifice sleep in order to protect their group

against night-time dangers, then there is no obvious reason to

suspect that this should incur different costs (C) or provides

different benefits (B) to their social partners. Nevertheless,

females and males might differ with respect to how genetically

related they are to their group mates (rf= rm), and this alone

could drive sex differences in sleeping habits. Ancestral

human populations may have been characterized by female-

biased dispersal [41], which would have led to females and

males being differently related to their group mates. Returning

to the tribe-splitting model for the purpose of illustration (see

electronic supplementary material for details), we show that

female-biased dispersal—which leads to females being less

related to their group mates than are males (rf, rm)—leads to

females being favoured to invest more in sleep than are

males, when sleep sacrifice is altruistic (figure 2a and electronic

supplementary material, figure S2a).

But females and males do differ in many aspects of their

biology, particularly in relation to reproduction. Females

often invest more time and energy into raising their off-

spring than males who, not having this limitation, are free

to pursue additional mating opportunities with females

that remain available [42]. In this sense, females may be

seen as a resource for which males have to compete [43],
such that sexual selection usually acts more strongly in

relation to males. Insofar as these differences in fitness com-

ponents are relevant to the evolution of sleep, we might

expect that these, too, could favour sex-specific sleep pat-

terns. For example, if sleep sacrifice is associated with

increased mating opportunities [12] which could offset the

costs associated with sleep sacrifice, then males are expected

to gain more from sleep sacrifice than are females (Cm ,

Cf ). In addition, relatedness is expected to modulate how

competitive the males should be. Returning to the tribe-

splitting model for illustration (see electronic supplemen-

tary material for details), we show that an increased rate

of individual dispersal—which reduces genetic relatedness

between social partners—leads to more selfishness on the

part of males and, therefore, less sleep (figure 2b and

electronic supplementary material, figure S2b).

Sex-specific sleeping patterns have been reported in several

non-human animal species. Specifically, some studies report

that total sleep length is higher for females (in pectoral sandpi-

pers [12], in great tits [13], and in blue tits [44]) while others

report that total sleep length is higher for males (in fruit flies

[45], and in mice [46]). In humans, women have been suggested

to enjoy better-quality sleep [47–49]. Men are also more likely

than women to perform normally during the day with less

sleep [50,51], suggesting that in our evolutionary past either:

(i) women have been favoured to have more sleep and men

have evolved adaptations to reduce the harmful effects of less

sleep, or (ii) women need more sleep than men due to basic

physiological differences. Regardless, the role of relatedness

in modulating any of these patterns in humans or any other

animal species has not, to our knowledge, been explored

empirically.
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Figure 2. Females and males may be favoured to have different sleeping levels. Given that females are less related to their social partners than males, females
favour more sleep when (a) the sleep sacrifice is being used to protect the group against threats. When (b) sleep sacrifice is being used to increase male reproductive
success, females do not favour any sleep sacrifice, with males being the only ones to sacrifice sleep to gain an advantage over their mate competitors. Dashed line
represents the favoured level of sleep when this is constrained to be the same for females and males. The following parameter values were used for both panels:
male dispersal rate dm ¼ 0; budding dispersal rate dB ¼ 1; number of adult females nf ¼ 4; number of adult males nm ¼ 4; minimum level of sleep m ¼ 0.05;
and benefits of sleeping throughout the night bf ¼ bm ¼ 1. Additionally, in (a) the level of a threat is a ¼ 1 and the mating opportunities that females and males
can obtain through sleep sacrifice is cf ¼ cm ¼ 0, while in (b) the level of a threat is a ¼ 0 and the mating opportunities that females and males can obtain
through sleep sacrifice is cf ¼ 0 and cm ¼ 1, respectively. Here, we consider female-biased dispersal—see electronic supplementary material, figure S2 for
male-biased dispersal.
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4. Intragenomic conflict, genomic imprinting,
and sleep

The genes within an individual do not necessarily agree on

how their carrier should interact with social partners. Because

an individual can be more related to social partners through

one parent than the other, then genes inherited from each of

the two parents may differ with regards to the social behav-

iour that they favour [18,52,53]. Insofar as genetic relatedness

is relevant to the evolution of sleeping patterns, maternal-

origin genes and paternal-origin genes may then disagree

on how much an individual should sleep.

If individuals altruistically sacrifice sleep in order to protect

their group mates from danger, then we expect that the genes

for which relatedness between social partners is higher will

be more strongly favoured to sacrifice their carriers sleep.

Using again the tribe-splitting model as an illustration (see elec-

tronic supplementary material for details), increasingly female-

biased dispersal—which reduces genetic relatedness between

social partners with respect to their maternal-origin genes—

leads to paternal-origin genes favouring less sleep and

maternal-origin genes favouring more sleep (figure 3a; elec-

tronic supplementary material, figure S3a for the opposite

pattern when dispersal is male-biased). In contrast, if individ-

uals sacrifice sleep to increase their mating success, then the

genes for which relatedness is higher will favour more sleep.

Going back to the tribe-splitting model (see electronic sup-

plementary material for details), increasingly female-biased

dispersal, leads to paternal-origin genes favouring more sleep

and maternal-origin genes favouring less sleep (figure 3b; elec-

tronic supplementary material, figure S3b for the opposite
pattern when dispersal is male-biased). These scenarios

describe what is known as intragenomic conflicts [18,52,53].

These intragenomic conflicts are predicted to lead to

parent-of-origin-specific gene expression—i.e. ‘genomic

imprinting’ [18]. Consider a locus for which increased gene

expression leads to more sleep—a ‘sleep promoter’. The gene

that favours more sleep can get closer to its optimal level of

sleep by increasing its own expression. The gene that favours

less sleep, in contrast, gets closer to its optimal level of sleep

by decreasing its genetic expression. Such changes continue

until the gene favouring a lower level of sleep ends up silencing

itself, with the gene favouring a higher level of sleep winning

the intralocus conflict and, accordingly, setting the level of

expression to its own optimum [18] (figure 4; see [55] for a

simulation illustration). The logic is reversed for a locus in

which increased gene expression leads to less sleep, a ‘sleep

inhibitor’. In that case, it is the gene that favours lower level

of sleep that wins the conflict, and the other gene is silenced

(figure 4).

In recent years, there has been a growing interest in

the genetic [56–59] and epigenetic [60–66] control of sleep.

Epigenetic control comprises any molecular mechanism that

changes how genes are expressed without affecting the DNA

sequence itself [67] and includes genomic imprinting, which

is usually described as involving methylation of the gene’s

regulatory regions [18]. Several genes involved in the control

of sleep have been shown to be imprinted [68–76], but theoreti-

cal explanations for such patterns are relatively lacking. The

only exception is Haig’s [77] study of an intragenomic conflict

regarding sleep, where night waking to suckle in newborns is

predicted to lead to more maternal care [78,79]. In such
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Figure 3. Maternal- and paternal-origin genes disagree regarding how much the individual should sleep. Maternal-origin genes (orange) and paternal-origin genes
(blue) will disagree on how much an individual should sleep, which depends upon whether individuals are sacrificing sleep to (a) protect the group against threats
or (b) gain an advantage over their mate competitors (with black being the level favoured by a gene ignorant of its origin). Specifically, given that relatedness is
higher for paternal-origin genes, maternal-origin genes favour more sleep and paternal-origin genes less sleep if sleep is selfish (a). On the contrary, if sleep is
altruistic, then maternal-origin genes favour less sleep and paternal-origin genes more sleep (b). The following parameter values were used for both panels: male
dispersal rate dm ¼ 0; budding dispersal rate dB ¼ 1; number of adult females nf ¼ 4; number of adult males nm ¼ 4; minimum level of sleep m ¼ 0.05; and
benefits of sleeping throughout the night bf ¼ bm ¼ 1. Additionally, in (a) the level of a threat is a ¼ 1 and the mating opportunities that females and males can
obtain through sleep sacrifice is cf ¼ cm ¼ 0, while in (b) the level of a threat is a ¼ 0 and the mating opportunities that females and males can obtain through
sleep sacrifice is cf ¼ cm ¼ 1. Here, we consider female-biased dispersal—see electronic supplementary material, figure S3 for male-biased dispersal.
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scenarios, paternal-origin genes favour more night waking and

maternal-origin genes less night waking because mothers

might have future offspring from different fathers [77]. Here,

we have shown that social conflicts in adults may also be rel-

evant for the evolution of genomic imprinting in genes

controlling sleep.

5. Sleep disorders and genomic imprinting
Genomic imprinting renders individuals functionally haploid

at affected loci, and therefore vulnerable to the effects of

mutations that would otherwise have been (at least partially)

recessive under standard diploid gene expression [80]. These

mutations are predicted to result in extreme pathologies [81].

More generally, possible kinds of mutations that can lead to

dramatic consequences are: deletions, where a gene is removed

from the genome; epimutations, where disruptions occur in the

machinery responsible for determining the methylated pattern

of a gene; and uniparental disomy, where individuals carry

two copies of a maternal- or paternal-origin gene, instead of

one of each. In each of these types of perturbations, specific

predictions can be made about their consequences at the phe-

notypical level which are dependent on the selective force

that led to individuals sacrificing sleep (figure 4). Conversely,

if the phenotypic effect of the mutation is known, then these

predictions may be used to infer whether sleep sacrifice is

relatively selfish or altruistic (figure 4).

Among the most well-known examples of human pathol-

ogies that emerge from a disruption of genomic imprinting

patterns are those associated with Prader–Willi and Angelman

syndromes, which are hypothesized to have been
evolutionarily driven by an intragenomic conflict between

maternal-origin and paternal-origin genes in young children

with respect to their demand of maternal resources [82].

Because a mother’s future offspring might have different

fathers, the child’s paternal-origin genes favour greater greedi-

ness while the maternal-origin genes favour less greediness.

Consequently, maternal duplication/paternal deletion of the

chromosomic region 15q11-13 results in children with a pheno-

type that is the result of reduced maternal investment during

pregnancy, such as reduced weight, or that result in reduced

maternal investment in the newborn, such as poor suckling

response, weak cry, and physical inactivity. In contrast,

paternal duplications/maternal deletion of the chromosomic

region 15q11-13 results in children with a phenotype that is

the result of increased maternal care during pregnancy, such

as increased weight, or that result in increased maternal care

in the new-born, such as prolonged suckling response and

physical hyperactivity. Sleep is also affected [68,69,71,75]

because night waking in children is predicted to lead to more

maternal care [78,79]. Prader–Willi syndrome is then character-

ized by less night waking to suckle, while Angelman syndrome

is characterized by the opposite pattern, with more night

waking to suckle [68,69,71,75,77]. While the nature of the con-

flict is different from what we explore in our analysis, it

illustrates how genomic imprinting can affect sleep.

Other disorders have been hypothesized as being associ-

ated with genomic imprinting patterns, such as autism and

psychopathic disorders [83,84]. Such disorders are considered

to be extremes from a phenotypic-continuum, with autism

being a ‘hyper-altruistic’ brain disorder (low cognitive empa-

thy but high emotional empathy; [85]) and psychopathic
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Figure 4. Genomic imprinting of genes responsible for level of sleep and the effects of possible disruptions. Predictions as to which gene is expressed and which
gene is silent—maternal-origin gene (M, orange) or paternal-origin genes (P, blue)—when individuals are sacrificing sleep to protect the group against threats
(altruism) or to gain an advantage over their mate competitors (selfishness). We consider an example for a gene that promotes sleep (promoter) and an example for
a gene that inhibits sleep (inhibitor). In both cases, we assume female-biased dispersal—see electronic supplementary material, figure S4 for male-biased dispersal.
Note that for simplicity we assume methylation is associated with gene silencing, as is usually the case in mammals [54]. In cases where methylation is associated
with gene activation the outcome for hypo-methylation is expected to be that shown here for hyper-methylation, and vice versa.
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disorders a ‘hyper-selfish’ brain (high cognitive empathy but

low emotional empathy; [86]). The intragenomic conflict

between maternal-origin genes and paternal-origin genes is

over how altruistic an individual should be to their social

partners. Therefore, if indeed female-biased dispersal was

prevalent throughout human evolution, then relatedness

would have been higher for paternal-origin genes and lower

for maternal-origin genes. Accordingly, autism would be the

result of paternally expressed genes and psychopathy the

result of maternally expressed genes. The opposite pattern is

expected if male-biased dispersal was present.

Interestingly, in both autistic and psychopathic disorders,

sleep is also affected. Accordingly, autism is associated with

insomnia and lower levels of sleep [87] while psychopathic dis-

orders tend to be associated with deeper sleep [88–90]. These

patterns appear to match the predictions of sleep sacrifice

being associated with altruism, but could alternatively be a

consequence of anxiety in autism [91] and mental resilience

in psychopathic disorders [92]. Others suggest a different
continuum, where psychosis—instead of psychopathic dis-

orders—is the opposite extreme of autism [83] and concerning

parental-offspring conflict traits, similar to the ones described

above for Prader–Willi and Angelman syndromes and with

sleep also being affected in an identical way [93].

Some patterns of parent-of-origin gene expression have

already been found for genes associated with sleep and not

associated with chromosomic regions responsible for Prader–

Willi and Angelman syndromes, specifically six genes in an

experimental study with mouse strains [72], which suggests

that genomic imprinting may be present. More research is

necessary to understand if that is indeed evidence of genomic

imprinting and if it follows the patterns that we propose.

Additionally, genomic-wide association analysis and heritabil-

ity studies show tentative evidence for a genetic component for

several sleeping disorders, such as insomnia [94], obstructive

sleep apnoea [95], restless leg syndrome [96], narcolepsy and

essential hypersomnia [97], sleepwalking [98], sleep terrors

[99], and sleep paralysis [100]. To our knowledge, the



7

r
 D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//r
oy

al
so

ci
et

yp
ub

lis
hi

ng
.o

rg
/ o

n 
24

 J
un

e 
20

22
 

possibility that genomic imprinting is involved in any of those

disorders has yet to be investigated.
oyalsocietypublishing.org/journal/rspb
Proc.R.Soc.
6. Conclusion
Sleep is not usually considered to be a social behaviour. Here,

we have argued that an approach that takes the social impact

of sleep into consideration can offer new insights into its

evolutionary drivers. We have shown how the social environ-

ment may shape an individual’s sleeping pattern and also

explain sexual differences in sleep requirements. Moreover,

our approach also predicts the existence—and patterns—of

genomic imprinting in relation to loci that underpin sleep phe-

notypes. By taking a new approach to the study of sleep, we

have integrated our results with what is already known from

the literature to present new perspectives. Further empirical

work is necessary to determine if relatedness has indeed had
a modulating role in the evolution of sleep. If so, then our analy-

sis suggests that it may be crucial for understanding the

evolution of sleeping patterns and associated disorders.
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