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Recent years have seen a surge of interest in linking the theories of kin selection and sexual selection. In particular, there is a growing

appreciation that kin selection, arising through demographic factors such as sex-biased dispersal, may modulate sexual conflicts,

including in the context of male–female arms races characterized by coevolutionary cycles. However, evolutionary conflicts of

interest need not only occur between individuals, but may also occur within individuals, and sex-specific demography is known

to foment such intragenomic conflict in relation to social behavior. Whether and how this logic holds in the context of sexual

conflict—and, in particular, in relation to coevolutionary cycles—remains obscure. We develop a kin-selection model to investigate

the interests of different genes involved in sexual and intragenomic conflict, and we show that consideration of these conflicting

interests yields novel predictions concerning parent-of-origin specific patterns of gene expression and the detrimental effects of

different classes of mutation and epimutation at loci underpinning sexually selected phenotypes.
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Recent years have seen a surge of interest in the interplay of kin se-

lection and sexual selection (Boomsma 2007; Rankin 2011; Wild

et al. 2011; Pizzari and Gardner 2012; Carazo et al. 2014; Chip-

pindale et al. 2015; Faria et al. 2015; Hollis et al. 2015; Martin and

Long 2015; Pizzari et al. 2015). A key theme is the potential for

relatedness within mating groups to reduce sexual conflicts. For

example, Rankin’s (2011) theoretical analysis suggests that kin se-

lection arising through sex-specific demographies—in particular,

sex-biased dispersal—may curb the evolution of male traits that

harm females, including in the context of coevolutionary cycles of

adaptation and counteradaptation of the two sexes. Rankin’s anal-

ysis has stimulated further theory (Pizzari and Gardner 2012; Faria

et al. 2015; Pizzari et al. 2015) and empirical research (Carazo

et al. 2014), but this topic has been controversial (Chippindale

et al. 2015; Hollis et al. 2015; Martin and Long 2015).

However, evolutionary conflicts of interest need not only oc-

cur between individuals, but may also occur within individuals

(Haig 2000a; Burt and Trivers 2006). Indeed, kin selection has

been implicated in fomenting intragenomic conflict, particularly

in the context of sex-specific demographies (Haig 2000b; Úbeda

and Gardner 2010, 2011, 2012, 2015; Van Cleve et al. 2010;

Brandvain et al. 2011; Gardner 2014; Úbeda et al. 2014; Farrell

et al. 2015). For instance, if sex-biased dispersal results in an

individual being more related to their social partners through

one parent than the other, their paternal- and maternal-origin

genes may disagree as to how selfishly the individual should

behave (Haig 2000a; Úbeda and Gardner 2010). Such intrage-

nomic conflict is expected to lead to parent of origin specific

patterns of gene expression, that is, “genomic imprinting,” at evo-

lutionary equilibrium (Haig and Westoby 1989). In particular,

divergent selection on maternal- and paternal-origin genes with

respect to the level at which they are expressed is expected to

lead to one gene being silenced, and the other to express at a

level corresponding to its optimum. But whether this logic holds

in the context of sexual conflict—and coevolutionary cycles—is

unclear.
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Here, we investigate the scope for sex-biased dispersal to gen-

erate intragenomic conflict and drive the evolution of genomic ar-

chitecture in relation to sexual-conflict phenotypes. Specifically:

we develop and analyze a kin-selection model (Hamilton 1964;

Taylor and Frank 1996; Gardner and Welch 2011; Gardner 2014)

to determine the evolutionary interests of different classes of ge-

netic actor involved in sexual conflict, that is, genes of maternal-,

paternal-, and unknown-origin; and we use the “loudest voice pre-

vails” principle (Haig 1996; Úbeda and Haig 2004) to derive pre-

dictions as to patterns of gene expression and the consequences of

mutations and epimutations of loci underpinning sexual-conflict

phenotypes.

Model and Results
MATHEMATICAL MODEL

Following Rankin (2011) and Faria et al. (2015), we consider

an infinite diploid population divided into patches containing nm

males and nf females, with multiple mating such that every fe-

male mates with every male in her patch, and vice versa. Males

invest in a costly harming trait that increases personal reproduc-

tive success relative to other males in the patch, but reduces the

overall fecundity of the females in the group. Females invest

in a costly resistance trait, which reduces both the cost of be-

ing harmed and the benefit to the harming male. Specifically, a

male’s fecundity is fm = 1 + by(1 − sx ′) − uy, where b is the

marginal fecundity gain of harming in the absence of resistance,

y is his investment into harming, s is the impact of resistance, x′

is the average investment into resistance by females in his patch,

and u is the marginal fecundity cost of investment into harm-

ing. Each male’s relative reproductive success is proportional to

his fecundity and inversely proportional to the average fecun-

dity of the males in his patch. Likewise, a female’s fecundity

is ff = 1 − cy′(1 − hx) − vx , where c is the marginal fecundity

cost of being harmed in the absence of resistance, y′ is the average

investment into harming by males in her patch, h is the effective-

ness of resistance, x is her investment into resistance, and v is the

marginal fecundity cost of investment into resistance. Without

loss of generality, we set h = 1, such that x is the proportion of

the cost of being harmed recovered by a resisting female. Follow-

ing mating, each female produces a large number of offspring,

with an even sex ratio, in proportion to her fecundity. Adults then

die, and males disperse with probability mm and females disperse

with probability mf to a random patch, or else remain in their

focal patch. Following dispersal, nm males and nf females survive

at random within each patch to adulthood—all others perishing—

returning the population to the beginning of the lifecycle.

INTRAGENOMIC CONFLICT

Methodology
To assess intragenomic conflict, we employ the neighbor-

modulated fitness methodology of Taylor and Frank (1996). This

determines when genes are associated with higher fitness, and

hence favored by natural selection, directly via their impact on

their bearer’s phenotype and/or indirectly via the impact of identi-

cal by descent copies on their bearer’s social partner’s phenotypes.

A key assumption of this approach is that there is vanishingly little

genetic variation, such that selective differences in fitness are very

small. The resulting conditions may be interpreted as describing

when a gene’s activity increases its inclusive fitness, such that we

may formally describe each gene’s optimum (Gardner and Welch

2011; Gardner 2014). Here, we take “gene” to mean a physical

piece of DNA, as distinct from the “locus” at which such genes

reside and the “allele” that describes that gene’s type (Rousset

2004; Gardner and Welch 2011).

Male harm
We investigate the interests of different classes of genes in

relation to the male-harm phenotype by hypothetically granting

control of this phenotype to a genic actor A, residing in the

focal male’s genome, and determining when an increase in harm

increases the gene’s inclusive fitness (Hamilton 1964; Gardner

and Welch 2011; Gardner 2014). This occurs when:

b (1 − sx̄) − u

1 + bȳ (1 − sx̄) − u ȳ
− b (1 − sx̄) − u

1 + bȳ (1 − sx̄) − u ȳ
rmm|A

− c (1 − x̄)

1 − cȳ (1 − x̄) − vx̄

(
rmm|A + rfm|A

)
(1 − a) > 0, (1)

where x̄ is the population average level of resistance, ȳ is

the population average level of harm, rmm|A is the relatedness

between the actor and the male’s male patch mates, rfm|A is the

relatedness between the actor and the male’s female patch mates,

and a = ((1 − mf )2 + (1 − mm)2)/2 is the “scale of competition”

in a viscous population with sex-specific dispersal (Frank 1998;

Gardner 2010; Faria et al. 2015; see Supporting Information for

details). Increased investment into harm provides a direct-fitness

benefit for the actor by increasing the male’s relative reproductive

success (first term on left-hand side of condition 1), but incurs

an inclusive-fitness loss by reducing the relative reproductive

success of related mate competitors (second term) and reducing

the overall fecundity of local females and of their mates (third

term).

Condition (1) may be used to determine the convergence

stable (Christiansen 1991; Taylor 1996; Davies et al. 2016) level

of harm which, if it takes an intermediate value, is given by:
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y∗
A = c(mf (2 − mf ) + mm (2 − mm)

(
rfm|A + rmm|A

)
(1 − x) + 2

(
u

(
1 − rmm|A

)
(1 − vx) − b

(
1 − rmm|A

)
(1 − sx) (1 − vx)

)

c
(
2

(
1 − rmm|A

) + (mf (2 − mf ) + mm (2 − mm))
(
rfm|A + rmm|A

))
(1 − x) (u − b (1 − sx))

(2)

(see Supporting Information for details).

Inspection of condition (1) and equation (2) reveals that dif-

ferent genic actors may have different inclusive-fitness interests

in relation to harming, if they are differentially related to the

male’s patch mates (rmm|A and rfm|A). We consider three classes

of genic actors in the male’s genome: autosomal genes that lack

parent-of-origin information (hereafter “ignorant genes,” A = I),

autosomal genes that know themselves to have originated from the

individual’s mother (hereafter “maternal-origin genes,” A = M),

and autosomal genes that know themselves to have originated

from the individual’s father (hereafter “paternal-origin genes,”

A = P). If these genes exert some control over the phenotype

and differ in their inclusive fitness interests, there is intragenomic

conflict over that phenotype.

For ignorant genes (A = I), relatedness is given by:

rmm|I = mm (2 − mm) − mf
2 (nf − 1) + nf (1 + 2mm) − 2mf (1 − nf (2 − mm)) + nm(1 − mm)2

nf (1 − mm)2 + nm(1 − mf )2 + (4 − mf − mm) (mf + mm) (nfnm)
(3)

and

rfm|I = (1 − mf ) (1 − mm) (nf + nm)

nf (1 − mm)2 + nm(1 − mf )2 + (4 − mf − mm) (mf + mm) (nfnm)

(4)

(see Supporting Information for details). For maternal-origin

genes (A = M), relatedness is given by:

rmm|M = 1

nm
+ (1 − mm)2 (nm − 1) ((2 − mf − mm) (nf − mm − mf (nf − 1)) + nm (2 + mf + mm (3 − mm − mf )))

2nm
(
nf (1 − mm)2 + nm(1 − mf )2 + (4 − mf − mm) (mf + mm) (nfnm)

) ; (5)

and

rfm|M = (1 − mf ) (1 − mm) ((2 − mf − mm) (nf − mm − mf (nf − 1)) + nm (2 + mf (1 − mm) + mm (3 − mm)))

2
(
nf (1 − mm)2 + nm(1 − mf )2 + (4 − mf − mm) (mf + mm) (nfnm)

) (6)

(see Supporting Information for details). And for paternal-

origin genes (A = P), relatedness is given by:

rmm|P = 1

nm
+

(1 − mm)2 (nm − 1)
(
2 (nf + nm) − mf

2 (nf − 1) − mm (3nm − 2 − nf − mm (nm − 1)) + mf (nf (3 − mm) − 2 − nm (1 − mm))
)

2
(
nf (1 − mm)2 + nm(1 − mf )2 + (4 − mf − mm) (mf + mm) (nfnm)

)

(7)

and

rfm|P = (1 − mf ) (1 − mm)
(
2 (nf + nm) − mf

2 (nf − 1) − mm (3nm − 2 − nf − mm (nm − 1)) + mf (nf (3 − mm) − nm (1 − mm) − 2)
)

2(nf (1 − mm)2 + nm(1 − mf )
2 + (4 − mf − mm) (mf + mm) (nfnm)

(8)

(see Supporting Information for details). Note that relatedness for

ignorant (I) genes is the average of relatedness for maternal-origin

(M) and paternal-origin (P) genes (i.e., rmm|I =½ rmm|M+½ rmm|P
and rfm|I =½ rfm|M+½ rfm|P), and is equivalent to relatedness for

the focal male himself (Faria et al. 2015).

Substituting relatedness into equation (2) obtains the op-

timal level of harm for ignorant (Fig. 1A), maternal-origin

(Fig. 1B), and paternal-origin genes (Fig. 1C). For illustration,

assuming an even-breeding sex ratio (nf = nm): if there is no sex

bias in dispersal (mf = mm), then all genic actors have the same

relatedness to patch mates (rmm|M = rmm|I = rmm|P and rfm|M =
rfm|I = rfm|P), that is, no intragenomic conflict (y∗

M = y∗
I = y∗

P;

Fig. 1D); if dispersal is male-biased (mf < mm) then relatedness

is higher for maternal-origin genes than for paternal-origin genes

(rmm|M > rmm|I > rmm|P and rfm|M > rfm|I > rfm|P), that is, poten-

tial for intragenomic conflict with maternal-origin genes favoring

less harm (y∗
M < y∗

I < y∗
P; Fig. 1D); and if dispersal is female-

biased (mf > mm), then relatedness is higher for paternal-origin

EVOLUTION 2017 3



GONÇALO S. FARIA ET AL.

30

10

M
al

e 
ha

rm
 (y

I*)

0

1

Female dispersal (m
f ) 0

1

M
al

e 
di

sp
er

sa
l (
m m

)

I

30

10

M
al

e 
ha

rm
 (y

M
*)

0

1

Female dispersal (m
f ) 0

1

M
al

e 
di

sp
er

sa
l (
m m

)

M

30

10

M
al

e 
ha

rm
 (y

P*)

0

1

Female dispersal (m
f ) 0

1

M
al

e 
di

sp
er

sa
l (
m m

)

P

Female dispersal (mf)

16

20

St
ab

le
 le

ve
l o

f m
al

e 
ha

rm
 (y

*)
P

I
M

24

28

0.10.0 0.4 0.80.60.2

A

C D

B

Figure 1. Intragenomic conflict over male harm in the absence of female resistance. Optimal level of male harm for: (A) a gene that is

ignorant (I) of its parent-of-origin, (B) a gene that knows itself to be of maternal-origin (M), and (C) a gene which knows itself to be

of paternal-origin (P). (D) Analytical predictions for ignorant control (gray), maternal-origin control (orange), and paternal-origin control

(blue) for mm = 0.50. In all panels, the other parameter values are c = 0.02, b = 0.05, u = 0.03, nf = 3, and nm = 3.

genes than for maternal-origin genes (rmm|M < rmm|I < rmm|P and

rfm|M < rfm|I < rfm|P), that is, potential for intragenomic conflict

with paternal-origin genes favoring less harm (y∗
M > y∗

I > y∗
P;

Fig. 1D). In particular, if the male’s harming is approximately

optimal according to his own interests (or, equivalently, the in-

terests of his ignorant genes; y � y∗I): then if dispersal is male-

biased, his maternal-origin genes favor a reduction in harming

(because y∗M < y) and his paternal-origin genes favor an increase

in harming (because y∗P > y); and if dispersal is female-biased,

his maternal-origin genes favor an increase in harming (because

y∗M > y) and his paternal-origin genes favor a decrease in harm-

ing (because y∗P < y). To assess the correctness and robustness

of these predictions, and for the purpose of concrete illustration,

we develop an individual-based simulation model tracking the

evolution of harm under the control of maternal-, paternal-, or

unknown-origin genes, respectively (see Supporting Information

for details). In each case, we find that the outcome is broadly

consistent with the corresponding gene’s optimum (Fig. S1), with

the small discrepancies likely arising from mutation pressure and

random drift—non-Darwinian factors that are not considered in

the analytical treatment.

Female resistance
Following the same procedure, we now consider the interests of a

genic actor A = {M, P, I} carried by a focal female. We find that

an increase in the female’s resistance against harm increases the

actor’s inclusive fitness when:

(cȳ − v)

1 − cȳ (1 − x̄) − vx̄

(
1 − arff|A + (1 − a) rmf|A

)
> 0, (9)
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where rff|A is the relatedness between the actor and the female’s

female patch mates and rmf|A is the relatedness between the actor

and the female’s male patch mates (see Supporting Information

for details; Faria et al. 2015). Owing to symmetrical, diploid inher-

itance, rfm|A = rmf|A. Because cȳ < 1, that is, fecundity cannot be

negative, condition (9) is equivalent to cȳ > v. Accordingly, irre-

spective of any differences in relatedness, the female’s maternal-,

paternal-, and unknown-origin genes all favor increased resis-

tance when the cost cȳ associated with harm exceeds the cost v

of resistance, and these genes all favor reduced resistance when

the reverse obtains, that is, there is no intragenomic conflict over

resistance. Specifically, relatedness scales the strength of selec-

tion but does not affect its direction. This is because there is no

trade-off between a female’s direct and indirect fitness: resistance

increases her direct fitness and her male relatives’ fitness if it

increases her fecundity, and it decreases her direct fitness and her

male relatives’ fitness if it decreases her fecundity, so the neces-

sary and sufficient criterion for an increase in female resistance to

be favored is that it increases the female’s fecundity, irrespective

of degrees of relatedness (cf. Faria et al. 2015).

Coevolutionary cycles
Allowing harm and resistance to coevolve results in evolutionary

cycling: increased harm favors increased resistance, which favors

reduced harm and hence a concomitant reduction in resistance,

etc. In contrast to the suggestion of Rankin (2011), repeated by

Faria et al. (2015), we find that the selection dynamics involve

unstable cycles that spiral inwards to asymptote at a stable equi-

librium (see Supporting Information for details). However, these

cycles may be long-lasting and additional evolutionary forces–

such as de novo mutation–may render them stable (see below).

Interestingly, although sex-biased dispersal leads to maternal- and

paternal-origin genes being favored to pull the male-harm phe-

notype in different directions when at the equilibrium point cor-

responding to the ignorant genes’ interests (as above), this need

not be true for all locations in trait space. In particular, it is often

the case that both maternal- and paternal-origin genes are favored

to pull the male-harm phenotype in the same direction while this

phenotype is cycling around the equilibrium point (see Supporting

Information and Fig. S2 for details).

GENOMIC IMPRINTING

Loudest voice prevails
According to the kinship theory of genomic imprinting (Haig and

Westoby 1989), and specifically the “loudest voice prevails” prin-

ciple (Haig and Westoby 1989; Haig 1996; Úbeda and Haig 2004;

Farrell et al. 2015), intragenomic conflicts such as that described

above are predicted to lead to parent-of-origin specific gene ex-

pression and, in particular, the self-imposed silencing of one of

the genes at each conflicted locus. Considering a locus for which

an increased gene expression leads to an increase in the contested

phenotype (i.e., a “promoter” locus): then the gene with the larger

phenotypic optimum may effect this by increasing its own ex-

pression and the gene with the lower phenotypic optimum may

effect this by decreasing its own expression; each gene adjusting

its expression in this way results in no net change in total gene

expression at this locus, so further increases and decreases in gene

expression are favored; and the evolutionary conflict ends with

the gene with the lower phenotypic optimum silencing itself, such

that the gene with the larger phenotypic optimum wins the intralo-

cus conflict and sets its level of expression—and consequently,

the level of the phenotype—according to its own optimum. Con-

sidering a locus for which an increased gene expression leads to

a decrease in the contested phenotype (i.e., an “inhibitor” locus),

then the logic is exactly reversed, and the gene with the larger

phenotypic optimum is predicted to be silenced, whereas the gene

with the lower phenotypic optimum is predicted to win the intralo-

cus conflict and set its expression—and hence the phenotype—

according to its optimum.

Male harm
We use the loudest voice prevails principle to derive predictions

as to patterns of gene expression for conflicted loci underpinning

the harm phenotype. Considering a harm-promoter locus: then, if

there is male-biased dispersal (mf < mm), relatedness is higher

for the maternal-origin gene than for the paternal-origin gene

(rmm|M > rmm|P and rfm|M > rfm|P), leading to the maternal-origin

gene favoring the lower level of harm (y∗
M < y∗

P) and, accord-

ingly, the maternal-origin gene is predicted to be silenced and the

paternal-origin gene expressed at its optimal level (Fig. 2A), such

that the level of harm is that which maximizes the paternal-origin

gene’s inclusive fitness (Fig. 2B); and if there is female-biased

dispersal (mf > mm), the opposite pattern holds. Alternatively,

considering a harm-inhibitor locus: then, if there is male-biased

dispersal (mf < mm), relatedness is higher for the maternal-

origin gene than for the paternal-origin gene (rmm|M > rmm|P and

rfm|M > rfm|P), leading to the maternal-origin gene favoring the

lower level of harm (y∗
M < y∗

P) and, accordingly, the paternal-

origin gene is predicted to be silenced and the maternal-origin

gene expressed at its optimal level (Fig. 3A), such that the level

of harm is that which maximizes the maternal-origin gene’s in-

clusive fitness (Fig. 3B); and, if there is female-biased dispersal

(mf > mm), the opposite pattern holds.

To assess the correctness and robustness of these predictions,

and to provide a concrete illustration of the loudest voice pre-

vails principle, we develop an individual-based simulation model

(see Supporting Information for details) tracking the evolution

of parent-of-origin specific gene expression and the resulting

male-harm phenotype, until equilibrium is attained. Here, we con-

sider harm evolving in the absence of resistance. Considering a
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Figure 2. Genomic imprinting of a male-harm promoter. (A) Analytical predictions (lines) and simulation results (dots, each representing

a single replicate) for level of gene expression expected for the maternal-origin gene (orange) and paternal-origin gene (blue) at a locus

whose gene product promotes male harm. (B) Resulting level of male harm, showing the interests of the gene (maternal- or paternal-

origin) that wins the conflict (solid line) and the interests of the gene that loses the conflict (dashed line). (C) Evolution of gene expression

of a male-harm promoter for a maternal-origin gene (orange) and paternal-origin gene (blue). (D) Evolution of male harm, with the lines

representing the optimal level for the maternal-origin gene (orange) and paternal-origin gene (blue). In all panels, the parameters are

as follows: c = 0.02, b = 0.05, u = 0.03, mm = 0.50, nf = nm = 3, with a mutation rate of 0.01 and 1000 patches. For panels (C) and

(D), we indicate the generations in which intragenomic conflict initiates (i.e., male harm crosses into the zone between the two genetic

optima; black arrow) and terminates (i.e., the maternal-origin gene is effectively silenced, its expression decreasing to a value equal to

its average over the final 2 × 105 generations; white arrow), and we assume mf = 0.20.

male-harm promoter (Fig. 2), and a population in which there is

initially zero expression of either gene at this locus and hence

no harming, we find that: imprinted gene expression does evolve,

and in the expected direction—that is, the paternal-origin gene

expressing at a higher level under male-biased dispersal, and the

maternal-origin gene expressing at a higher level under female-

biased dispersal—but with the less expressed gene being incom-

pletely silenced, as a consequence of mutation-selection balance

(Fig. 2A); the resulting level of male harm is broadly consistent

with the optimum for the expressed gene—that is, the paternal-

origin gene under male-biased dispersal and the maternal-origin

gene under female-biased dispersal (Fig. 2B).

Specifically, we find that both genes initially increase

their expression (Fig. 2C), resulting in an increase in harming

(Fig. 2D); until the phenotype surpasses the optimum for the gene

favoring less harm (Fig. 2D, black arrow), after which time this

gene’s expression decreases, whereas the other gene’s expression

increases (Fig. 2C), until the former gene’s expression reaches

mutation-selection balance close to zero (Fig. 2C, white arrow)—

that is, it is effectively silenced—after which time the other gene

attains its optimal level of expression (Fig. 2C) and optimal level

of harm (Fig. 2D). Considering a male-harm inhibitor, and a pop-

ulation in which there is initially zero expression of either gene at

this locus and hence a maximal level of harm, recovers equivalent

results (Fig. 3).

Female resistance
We showed above that there is no intragenomic conflict between a

female’s genes with respect to her resistance phenotype. Accord-

ingly, the loudest voice prevails principle predicts no parent-of-

origin specific gene expression for loci underpinning this pheno-

type. We use individual-based simulations to explore the evolution
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Figure 3. Genomic imprinting of a male-harm inhibitor. (A) Analytical predictions (lines) and simulation results (dots, each representing

a single replicate) for level of gene expression expected for the maternal-origin gene (orange) and paternal-origin gene (blue) at a locus

whose gene product inhibits male harm. (B) Resulting level of male harm, showing the interests of the gene (maternal- or paternal-origin)

that wins the conflict (solid line) and the interests of the gene that loses the conflict (dashed line). (C) Evolution of genetic expression

of a male-harm inhibitor for a maternal-origin gene (orange) and paternal-origin gene (blue). (D) Evolution of male harm, with the lines

representing the optimal level for the maternal-origin gene (orange) and paternal-origin gene (blue). In all panels, the parameters are as

follows: c = 0.02, b = 0.05, u = 0.03, mm = 0.50, nf = nm = 3, with a mutation rate of 0.01 and 1000 patches. For panels (C) and (D), we

indicate the generations in which intragenomic conflict initiates (i.e., male harm crosses into the zone between the two genetic optima;

black arrow) and terminates (i.e., the paternal-origin gene is effectively silenced, its expression decreasing to a value equal to its average

over the final 2 × 105 generations; white arrow), and we assume mf = 0.20.

of female resistance in the context of fixed levels of male harm,

confirming that both maternal- and paternal-origin genes favor

the same level of female resistance—all or nothing, depending

on the level of male harm—and finding no striking differences in

each gene’s level of expression (Fig. S3).

Coevolutionary cycles
Insofar as coevolution of harm and resistance results in the at-

tainment of a stable equilibrium, in the region of the optimum

for ignorant genes, sex-biased dispersal is expected to lead to an

intragenomic conflict of interests such that genes originating from

one parent are favored to reduce harm and genes originating from

the other parent are favored to increase harm. Accordingly, the

loudest voice prevails principle predicts exactly the same patterns

of parent-of-origin specific gene expression predictions as out-

lined above. However, the transient but nevertheless long-lasting

selection dynamics—and, potentially, the long-term evolutionary

dynamics—may involve cycling around the equilibrium and out-

with the zone of intragenomic conflict. Consequently, it is unclear

whether genomic imprinting is expected in this coevolutionary

context.

We investigate this scenario using individual-based simu-

lations for the purpose of concrete illustration. Considering a

male-harm promoter, we find that coevolutionary cycles may

arise irrespective of whether the population is initialized away

from the equilibrium point (in particular, at zero harm and zero

resistance; Fig. 4A and B) or at the equilibrium point (in par-

ticular, with harm and resistance set according to the interests

of the ignorant genes; Fig. 4C and D), such that the cycles

appear to be maintained indefinitely. Under both initialization
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Figure 4. Cyclical coevolutionary dynamics of male harm y and female resistance x for a promoter of male harm. (A) Analytical predictions

of the dynamics suggest that there is a stable point (black dot) where genomic imprinting may be present and to which the population

arrives via an inward spiral from an initialization point at zero male harm, but individual-based simulations additionally incorporating

mutation and random drift (black lines) instead exhibit stable cycling. Arrows indicate direction (increase or decrease) of selection acting

upon maternal-origin (orange) and paternal-origin (blue) genes, with the arrows pointing in opposite directions within the zone of

conflict and pointing in the same direction outwith the zone of conflict. (B) Individual-based simulation results for the level of expression

of a promoter of male harm over multiple generations for maternal-origin (orange) and paternal-origin (blue) genes, when male harm is

initialized at zero. (C) As in (A) but with the population initialized at its equilibrium level. (D) Individual-based simulation results for the

level of expression of a promoter of male harm over multiple generations for maternal-origin (orange) and paternal-origin (blue) genes,

when the population initialized at its equilibrium level. We used the following values for the different parameters: nf = nm = 3, c = 0.02,

b = 0.05, u = 0.03, v = 0.01, s = 0.75, mf = 0, mm = 0.5, with a mutation rate of 0.01 and 1000 patches.

treatments, the resulting cycles involve the population spending

the majority of generations outwith the zone of conflict, such that

both maternal- and paternal-origin genes are typically favored

to pull the phenotype in the same—albeit fluctuating—direction

(Fig. 4A and C). Accordingly, although random genetic drift may

lead to parent-of-origin specific gene expression, there is no clear

direction to imprint (Fig. 4B and D). Consideration of a male-

harm inhibitor recovers equivalent results (Fig. 5). As above, we

find no evidence of imprinting in relation to female resistance

(Fig. S4).

ASSOCIATED PATHOLOGIES

Genomic imprinting renders individuals functionally haploid and

hence vulnerable to deleterious mutations (Holliday 1990). In-

deed, in the context of human disease, mutations at imprinted loci

are often associated with extreme pathologies (Hirasawa and Feil

2010), as the “tug of war” between paternal- and maternal-origin

genes—with each gene pulling the phenotype strongly in opposite

directions as a consequence of even a slight discrepancy between

their phenotypic optima—leads to a delicate equilibrium that, if

the control exerted by one party is unexpectedly disrupted, may
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Figure 5. Cyclical coevolutionary dynamics of male harm y and female resistance x for an inhibitor of male harm. (A) Analytical predictions

of the dynamics suggest that there is a stable point (black dot) where genomic imprinting may be present and to which the population

arrives via an inward spiral from an initialization point at one of male harm, but individual-based simulations additionally incorporating

mutation and random drift (black lines) instead exhibit stable cycling. Arrows indicate direction (increase or decrease) of selection acting

upon maternal-origin (orange) and paternal-origin (blue) genes, with the arrows pointing in opposite directions within the zone of

conflict and pointing in the same direction outwith the zone of conflict. (B) Individual-based simulation results for the level of expression

of an inhibitor of male harm over multiple generations for maternal-origin (orange) and paternal-origin (blue) genes, when male harm

is initialized at one. (C) As figure (A), but with the population initialized at its equilibrium level. (D) Individual-based simulation results

for the level of expression of an inhibitor of male harm over multiple generations for maternal-origin (orange) and paternal-origin (blue)

genes, when the population initialized at its equilibrium level. We used the following values for the different parameters: nf = nm = 3, c

= 0.02, b = 0.05, u = 0.03, v = 0.01, s = 0.75, mf = 0, mm = 0.5, with a mutation rate of 0.01 and 1000 patches.

result in a phenotype that lies far beyond either gene’s optimum.

Such disruptions may include the following: mutations that re-

sult in a modification of the sequence coded by the DNA, and

epimutations that modulate the presence/absence of methylation

in critical zones of the genes. In either case, the phenotypic effect

of such disruptions are expected to primarily manifest in males,

as only this sex expresses the harming phenotype. Here, we out-

line predictions for the effects of such various disruptions to the

normal expression of imprinted loci (Fig. 6).

A knock-out/deletion mutation that results in a gene failing

to produce any functional gene product has no phenotypic ef-

fect if that gene is silenced anyway. For instance, in the context

of male-biased dispersal: harm-promoter loci are predicted to be

maternally-silenced and paternally-expressed, such that a knock-

out/deletion of a maternal-origin gene gives rise to a normal phe-

notype, but a knockout/deletion of a paternal-origin gene results

in a reduction in the harm-promoting gene product and hence a

hypo-aggressive phenotype; and harm-inhibitor loci are predicted

to be paternally-silenced and maternally-expressed, such that a

knockout/deletion of a maternal-origin gene results in a reduction

in the harm-inhibiting gene product and hence a hyper-aggressive

phenotype but a knockout/deletion of a paternal-origin gene re-

sults in a normal phenotype. Opposite predictions obtain in the

context of female-biased dispersal (Fig. 6).
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Figure 6. Expression of imprinted genes and effects of possible mutations (disruptive mutations, hypo-methylation, or hyper-

methylation) under male- versus female-biased dispersal, plus effects of crosses between females from populations with male-biased

dispersal and males from populations with female-biased dispersal, and vice versa. Orange/blue genes are expressed, whereas colorless

genes are silent. “Vertebrates” denotes all instances in which methylation leads to gene silencing and “insects” denotes all instances in

which methylation leads to gene expression.

Epimutations arise when changes occur in the normal pat-

tern of DNA methylation, which is considered to be the main

(though perhaps not exclusive; Bartolomei 2009) mechanism

underpinning genomic imprinting. In vertebrates, DNA methy-

lation is typically associated with gene silencing (Bird 2002),

whereas in insects, it is typically associated with gene activation

(Glastad et al. 2014). Accordingly, a disruption in methylation—

whether it is accidental loss of methylation of a typically methy-

lated gene (“hypo-methylation”) or accidental methylation of a

typically unmethylated gene (“hyper-methylation”)—is expected

to have different consequences for different taxa. In the con-

text of taxa in which methylation tends to silence genes: hypo-

methylation of a harm-promoter locus results in an increase in

the harm-promoting gene product and hence a hyper-aggressive

phenotype, whereas hyper-methylation of a harm-promoter lo-

cus results in a decrease in the harm-promoting gene product

and hence a hypo-aggressive phenotype; and hypo-methylation

of a harm-inhibitor locus results in an increase in the harm-

inhibiting gene product and hence a hypo-aggressive pheno-

type, whereas hyper-methylation of a harm-inhibitor locus re-

sults in a decrease in the harm-inhibiting gene product and

hence a hyper-aggressive phenotype. Conversely, we expect the
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opposite pattern in taxa in which methylation tends to activate

genes (Fig. 6).

Another useful and practical way to study genomic imprint-

ing is through reciprocal crosses between distinct populations or

species (Haig and Westoby 1991; Oldroyd et al. 2013; Galbraith

et al. 2016). For example, if a female of a species with female-

biased dispersal (i.e., expected to have maternally-expressed

harm-promoter loci and paternally-expressed harm-inhibitor loci)

is mated with a male of a species with male-biased dispersal

(i.e., expected to have paternally-expressed harm-promoter loci

and maternally-expressed harm-inhibitor loci), then their male

progeny are expected to have both maternal- and paternal-origin

genes expressed at harm-promoter loci and to have both maternal-

and paternal-origin genes silenced at harm-inhibitor loci, result-

ing in a hyper-aggressive phenotype. In contrast, crosses between

males from the first species and females from the second species

are expected to yield hypo-aggressive sons (Fig. 6).

Discussion
We have investigated the potential for sex-biased dispersal to

generate intragenomic conflict and, consequently, drive the evo-

lution of genomic imprinting in the context of sexual conflict. We

have found that, insofar as sex-specific demographies—such as

sexual-biased dispersal—lead to asymmetries in relatedness be-

tween members of mating groups with respect to their maternal-

versus paternal-origin genes, an intragenomic conflict of interest

may arise that results in the evolution of genomic imprinting and

increased vulnerability of individuals to mutational and epimuta-

tional challenge.

We expect intragenomic conflict to occur when individuals

are more related to their social partners via one parent than via

the other, such that their genes originating from one parent are

more inclined toward kin-selected selflessness with regards to

these social partners than are the genes originating from the other

parent (Haig 2000a; Úbeda and Gardner 2010). In the present

study, selflessness manifests as a reduction in the extent to which

a male harms his mating partners. Such intragenomic conflict

between genes of maternal- versus genes of paternal-origin is

expected to drive parent-of-origin specific gene expression at loci

underpinning male harm, with one gene typically silencing itself,

while the other expresses at its optimal level (Haig 1996; Úbeda

and Haig 2004). We predict that loci that promote male harm will

be maternally-silenced and paternally-expressed when dispersal is

male-biased, on account of individuals being more related to their

social partners via their mothers and hence their maternal-origin

genes being more inclined to selflessness; and we predict that loci

that inhibit male harm will be paternally-silenced and maternally-

expressed, for the same reason. The same logic leads to exactly

the opposite predictions when dispersal is female-biased. In line

with previous studies’ suggestions that genetic relatedness does

not modulate the level of female resistance to male harm (Rankin

2011; Faria et al. 2015), we find no scope for intragenomic conflict

or genomic imprinting with respect to this phenotype.

Following Rankin (2011) and Faria et al. (2015), we have

considered a relatively generic male-harm phenotype, which leads

to a reduction in female fecundity and an increase in male rela-

tive reproductive success that we expect has application to a wide

range of natural and experimental systems. Examples include ag-

gressive behavior (Knott and Kohlenberg 2011; Feldblum et al.

2014), damaging genetalia (Crudgington and Siva-Jothy 2000;

Stutt and Siva-Jothy 2001), toxic seminal proteins (Chapman et al.

1995; Chapman 2006), graspers (Arnqvist and Rowe 2002), and

forced copulation (Brennan et al. 2010). We have also considered

a relatively generic ecology and demography, which we expect has

application to a wide range of species. In particular, although we

have focused on sex-biased dispersal, other forms of sex-specific

demography are expected to yield equivalent results (Úbeda and

Gardner 2010, 2011, 2012). Moreover, following Rankin (2011),

we have assumed that there are no deleterious consequences of

consanguinous matings. Inbreeding depression may have a quan-

titative impact on the optima of conflicting genic agents, if elimi-

nation of some inbred individuals leads to an increase in average

outbredness, with concomitant impact upon coefficients of relat-

edness, but it is not expected to alter our key, qualitative results.

Importantly, our key predictions depend only on the existence

and direction of intragenomic conflict, and not the magnitude of

the discrepancy between optima: accordingly, we expect these

patterns to be relatively robust to variation in model assumptions

(Farrell et al. 2015).

However, not all taxa are equally likely to evolve genomic

imprinting. Notably, Drosophila melanogaster lacks key methy-

lation enzymes (Zemach et al. 2010; Raddatz et al. 2013) and

consequently has very little methylation (Takayama et al. 2014)

and limited scope for genomic imprinting. It has often been

suggested that genomic imprinting is absent outwith mammals

and flowering plants, largely on account of lack of evidence

from model organisms such as D. melanogaster (Chapman 2006;

Spencer and Clark 2014; Yan et al. 2014). Nevertheless, there is

growing direct and indirect evidence of extensive methylation, and

even genomic imprinting, in other insects, such as hymenoptera

(Wang et al. 2006; Kronforst et al. 2008; Kucharski et al. 2008;

Herb et al. 2012; Amarasinghe et al. 2014; Oldroyd et al. 2013;

Yan et al. 2014, 2015; Cook et al. 2015; Galbraith et al. 2016;

Remnant et al. 2016). Such taxa provide excellent opportunities

for developing new theoretical and empirical avenues of genomic

imprinting research (Queller 2003; Rautiala and Gardner 2016).

More generally, while the current formulation of the kinship the-

ory of genomic imprinting suggests that, whenever imprinting can

evolve, it will evolve, provided there is a nonzero degree of conflict
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between maternal- versus paternal-origin genes, more likely the

extent of the conflict and hence selection for imprinting will need

to exceed some nonzero threshold in order for it to evolve in the

face of mutation pressure and other evolutionary forces. A better

understanding of the factors acting in opposition to genomic

imprinting is needed to explain why this phenomenon appears to

be the exception rather than the rule (Wilkins et al. 2016).

It is unclear to what extent parent-of-origin specific gene ex-

pression modulates the phenotypic evolution of male-harm traits

at the individual level. Although a male-harm phenotype under-

pinned by a single genetic locus may be expected to evolve to a

quantitatively different level according to whether its gene prod-

uct acts to promote or inhibit that phenotype—on account of

this affecting which gene is expected to win the intragenomic

conflict—more realistically, multigenic phenotypes may be ex-

pected to be underpinned by a roughly equal number of promoter

and inhibitor loci and, the interests of maternal- and paternal-

origin genes more or less cancelling out, equilibrating at a level

that is indistinguishable from the individual’s inclusive-fitness

optimum (Grafen 2006; Gardner and Ross 2014; Farrell et al.

2015). Hence, the usual manifestation of this conflict of interest

is likely limited to the molecular world rather than the traditional

behavioral-ecological realm of individuals and populations. The

relative lack of exploration of the molecular underpinnings of

sexually selected traits means that our theoretical predictions are

made in the almost complete absence of empirical data on rele-

vant patterns of genomic imprinting and, accordingly, this pro-

vides a valuable opportunity for a truly independent test of theory

(Queller 2003; Wild and West 2009; Rautiala and Gardner 2016).

Moreover, our predictions—namely, that male-harm traits will

have a tendency to be imprinted in structured populations—may

facilitate the discovery of elusive genes underpinning such classic

behavioral-ecological phenotypes.

An important consequence of genomic imprinting is that the

systematic silencing of the gene inherited from one parent renders

the individual functionally haploid and, accordingly, vulnerable

to the effects of disruptive mutations and epimutations at the im-

printed locus. Moreover, the “tug of war” between maternal- and

paternal-origin genes that normally balances more or less at the in-

dividual’s phenotypic optimum (but see Wilkins and Haig 2001;

Wilkins 2010, 2011) may, in the event of one of these genetic

parties being rendered nonfunctional, give rise to an extreme phe-

notype that is strongly maladaptive from either gene’s perspective.

Indeed, genomic imprinting has been implicated in a number of

debilitating human diseases, including infant growth disorders

(Hirasawa and Feil 2010), childhood cancers (Lim and Maher

2010), and possibly also neurological disorders such as autism

and psychopathy (Crespi and Badcock 2008; Úbeda and Gard-

ner 2010). Analogous to the hyper- and hypo-aggressive sexual

traits, we have predicted to be associated with particular classes

of mutation and epimutation at imprinted loci underpinning male-

harm phenotypes, autism and psychopathy have been suggested to

represent polar-opposite phenotypes along a continuum of social-

brain disorders, with autism representing a hyperaltruistic brain

(low cognitive empathy but high emotional empathy; Smith 2009;

Úbeda and Gardner 2010) and psychopathy representing a hyper-

selfish brain (high cognitive empathy but low emotional empathy;

McHoskey 2001; Úbeda and Gardner 2010).

These disorders may not be altogether independent of the

male-harm behaviors that have been the focus of our study, as

selflessness in sexual conflict is simply one facet of a range of

cooperative versus competitive behaviors that concern imprinted

social brain theory. Indeed, the hitherto difficult-to-explain ten-

dency for autism and psychopathy to be more prevalent in males

than in females may point to their being manifestations of a

breakdown of a normal male-specific phenotype, like those in-

volved in sexual conflict. Clear data are lacking regarding psy-

chopathy, but some genes associated with autism have been re-

ported to have male-limited and parent-of-origin specific expres-

sion (Fradin et al. 2010; Corradi et al. 2014). More generally, we

suggest that many behavioral polymorphisms—so-called “animal

personalities” (Wolf and Weissing 2012)—may be explicable with

reference to gene-level conflicts rather than having an adaptive

rationale at the individual level.

We have also suggested that genomic imprinting effects may

be observed in reciprocal crosses between distinct populations or

species, with the production of either hyper- or hypo-aggressive

hybrids, depending on the dispersal patterns of each population

or species. This could potentially affect the outcome of competi-

tive interactions between hybridizing species. For instance, it may

influence the outcome of competitive encounters, leading to nar-

rowing or broadening of hybrid zones and deciding into which

parental species’ territory the hybrid zone will expand, as well as

with which parental species the hybrids will more often introgress.

Hybridization has been reported to influence animal personalities,

with hybrids having been described as exhibiting increased or de-

creased levels of aggression than either of their parental species

in salmon (Einum and Fleming 1997), warblers (Pearson and Ro-

hwer 2000), manakins (McDonald et al. 2001), and lizards (Rob-

bins et al. 2014). We are not aware of such personality effects ever

having been interpreted in the light of intragenomic conflict.

While our analysis provides support for the loudest voice

prevails principle, which relates a mismatch between the inclu-

sive fitness optima of maternal- versus paternal-origin genes to

patterns of parent-of-origin specific gene expression at evolu-

tionary equilibrium—and, indeed, provides the first simulation

exploration of the temporal unfolding of loudest voice prevails

dynamics—it also highlights an important caveat that potentially

limits the application of this principle to natural populations. In

particular, we have found that in populations that are more-or-less
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permanently prevented from attaining evolutionary equilibrium—

such as in the context of coevolutionary cycling—the phenotype

may be sufficiently far from the optimum of either set of genes

that these will be favored to drive the phenotype in the same direc-

tion, so that even when their optima do not exactly coincide they

may nevertheless never come into actual intragenomic conflict.

West and Gardner (2013) noted that the existence of intragenomic

conflict provides strong support for the exquisite adaptedness of

individuals, and here we reverse this principle by emphasizing that

scenarios involving permanent maladaptation—for example, ow-

ing to fluctuating selection pressures induced by an antagonistic,

coevolving party—may lead to the extinguishing of intragenomic

conflicts. This may explain why, although there is extensive and

growing evidence of imprinting across a wide range of organ-

isms, not all loci that are otherwise expected to imprinted show

parent-of-origin specific expression.

This is, as far as we are aware, the first study to have con-

sidered the kinship theory of genomic imprinting in relation to

an explicitly sexually selected trait. Closely related topics that

have been investigated from a parent-of-origin specific gene-

expression perspective include sex allocation (Queller 2003; Wild

and West 2009; Haig 2014; Rautiala and Gardner 2016), sexual

antagonism (Day and Bonduriansky 2004), paternal genome elim-

ination (Gardner and Ross 2014), incest avoidance (Haig 1999),

and alternation of asexual and sexual reproduction (Haig and

Wilczek 2006). Although there has been significant interest in ex-

ploring the overlap and interplay of other forms of intragenomic

conflict with mating success modulating behaviors, the empha-

sis of this research has been on understanding how selfish genes

may drive the evolution of mating systems (Haig and Bergstrom

1995; Zeh and Zeh 1996; Price and Wedell 2008; Gardner and

Ross 2011; Wedell 2013; Price et al. 2014; Taylor et al. 2014).

In contrast, our analysis has reversed the direction of causation to

consider how mating ecology has driven the evolution of intrage-

nomic conflict. More generally, the present study has established

further links between the theories of kin selection and sexual

selection, two fields that have for a long time advanced almost

completely independently of each other (Boomsma 2007; Rankin

2011; Wild et al. 2011; Pizzari and Gardner 2012; Pizzari et al.

2015). The present initial investigation of the overlap between

the kinship theory of genomic imprinting and the evolution of

sexual conflicts highlights an exciting opportunity for productive

interplay between these two scientific realms.
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