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Adaptation and the evolution of parasite virulence
in a connected world
Geoff Wild1, Andy Gardner2 & Stuart A. West3

Adaptation is conventionally regarded as occurring at the level of the
individual organism, where it functions to maximize the individual’s
inclusive fitness1–3. However, it has recently been argued that empiri-
cal studies on the evolution of parasite virulence in spatial popula-
tions show otherwise4–7. In particular, it has been claimed that the
evolution of lower virulence in response to limited parasite
dispersal8,9 provides proof of Wynne-Edwards’s10 idea of adaptation
at the group level. Although previous theoretical work has shown
that limited dispersal can favour lower virulence, it has not clarified
why, with five different suggestions having been given6,8,11–15. Here
we show that the effect of dispersal on parasite virulence can be
understood entirely within the framework of inclusive fitness theory.
Limited parasite dispersal favours lower parasite growth rates and,
hence, reduced virulence because it (1) decreases the direct benefit of
producing offspring (dispersers are worth more than non-dispersers,
because they can go to patches with no or fewer parasites), and (2)
increases the competition for hosts experienced by both the focal
individual (‘self-shading’) and their relatives (‘kin shading’).
This demonstrates that reduced virulence can be understood as an
individual-level adaptation by the parasite to maximize its inclusive
fitness, and clarifies the links with virulence theory more generally16.

Darwin’s theory of evolution by natural selection explains both the
process and the purpose of adaptation17,18. The process of adaptation
occurs through the action of natural selection, which is mediated by
differential reproductive success of individual organisms, and result-
ing changes in gene frequency17. This process leads individual orga-
nisms to appear designed as if for the purpose of maximizing their
inclusive fitness, which is defined as the effect of one individual’s
actions on its genetic contribution to future generations through
its direct descendants and those of its relatives1,2. The inclusive fitness
approach to adaptation has been extremely successful, especially in
the fields of behavioural and evolutionary ecology, providing expla-
nations for a wide range of traits19,20.

Despite the success of inclusive fitness theory, a number of recent
papers have challenged the idea, arguing that natural selection can
favour group adaptations in cases in which inclusive fitness is not
maximized4–7. This suggestion is analogous to Wynne-Edwards’s
original idea of group selection10, whereby adaptations occur for
the benefit of the group. The primary empirical evidence upon which
this challenge is based4–7 is the experimental observation that para-
sites (viruses) of both moths and bacteria evolve to cause less damage
to their hosts (lower virulence) in spatially structured populations,
where dispersal can be limited8,9. The argument here is that the para-
sites become more prudent to prevent overexploitation and, hence,
avoid causing the extinction of the local host population. However, it
seems plausible that this effect of limited dispersal could also be
explained by inclusive fitness theory, because it will lead to a higher
relatedness between interacting parasites, which has long been

known to favour a more prudent exploitation of host resources
and, therefore, a lower virulence16 (Supplementary Information).
The only way to resolve this debate is to move away from verbal
arguments and towards formal theoretical models that incorporate
explicit spatial dynamics such as variable patch sizes and within-
patch demography, and to use such models to determine the under-
lying evolutionary mechanisms21.

Here we address this problem by using a standard epidemiological
model16,22, in the context of a geographically structured population,
to determine why limited parasite dispersal selects for lower levels of
virulence. We assume the simplest possible situation to make the
underlying selective forces explicit and to allow comparison with
previous models, which have shown that dispersal influences viru-
lence but have failed to clarify why11–15. More general discussion of
the various ways in which virulence theory has been expanded, to
examine the consequences of a range of potentially important bio-
logical factors, are provided elsewhere16,23. In addition to its role in
the debate over the process of adaptation, this effect of dispersal may
be particularly important for the evolution of parasites, because it
suggests that as human activity makes the world more connected,
natural selection will favour more virulent and dangerous parasites12.

We assume an ‘island model’ with an infinite number of patches
(subpopulations), each of which may contain up to N host indivi-
duals. In this model, an individual (host or parasite) either remains
on its natal patch or disperses. If it disperses, each of the other patches
in the population is an equally likely destination. The island model is
a standard tool for examining the effect of population structure while
allowing analytical simplifications by dividing interactions into those
that are ‘local’ (same patch) and those that are ‘global’ (different
patch)21,24. We assume that hosts reproduce at a constant per-capita
rate, b. A newborn host will attempt to settle either on its natal patch
(local dispersal), with probability 1 – dh, or on a randomly chosen,
non-natal patch (global dispersal), with probability dh. A newborn
host successfully settles on a patch only when the patch in question
supports fewer than N individuals. If successful, the newborn host is
assumed, for convenience, to mature instantaneously. If unsuccess-
ful, the newborn dies. We assume also that adult hosts are not capable
of dispersal—each adult remains on the patch it settled as a newborn.

We classify hosts as either infected by the parasite or uninfected.
We ignore the possibility of multiple infections16, so infected and
uninfected hosts might also be called non-susceptible and suscep-
tible, respectively. In our model, uninfected hosts die at constant per-
capita rate, m. Infected hosts, on the other hand, suffer a greater risk of
mortality, dying at rate m 1 z. Here z describes the disease-induced
mortality (parasite virulence) that arises as a consequence of the
parasite’s exploitation of its host.

We assume that parasite transmissibility, b(z), is positively corre-
lated with parasite virulence (z), to reflect the standard assumption
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that increased parasite growth leads not only to greater transmission,
but also to greater host mortality16,22. We allow only horizontal trans-
mission of the parasite, from infected adult to uninfected adult;
hence, vertical transmission from host parent to its unborn offspring
is not possible. Transmission is assumed to occur locally (within each
patch), at a rate proportional to (1 – dp)b(z), and globally (to other
patches), at a rate proportional to dpb(z). In both cases, parasite
transmission is assumed to follow a law of mass action. The para-
meter dp is a proportion and is interpreted as the rate at which
parasite offspring ‘disperse’ to new, randomly chosen patches.

We classify patches, and the parasites on those patches, according
to the local number of uninfected (i) and infected (j) hosts. Naturally,
parasite fitness depends upon the class to which its patch belongs, and
the distribution of the different classes of patch in the population. To
determine the evolutionarily stable level of parasite virulence, z*, we
consider a rare mutant parasite (the focal individual) belonging to
class (k, l)—that is, on a patch with k uninfected hosts and l infected
hosts. We note that although the global frequency of the mutant
parasite is negligible, the probability that a parasite neighbour of a
mutant is itself a mutant is not necessarily negligible. Thus, it is
reasonable to expect that the social effects of mutant virulence are
felt by other mutants as well.

In Supplementary Information, we show that if the focal mutant
parasite increases its virulence phenotype by a small amount, d . 0,
the resulting change in its inclusive fitness, DW(k, l), is given by

DW(k, l)~{dv(k, l)

zdb’(z) (1{dp)kv(k{1, lz1)zdp

X
(i, j)

v(i, j)(iz1)p(iz1, j{1)

h i

{db’(z)(1{dp)k(v(k, l){v(k{1, lz1))

{db’(z)(1{dp)k(v(k, l){v(k{1, lz1))r(k, l)(l{1)

zd(v(k, l{1){v(k, l))r(k, l)(l{1)

ð1Þ

where p(i, j) is the equilibrium frequency of class-(i, j) patches,
r(k, l) 5 r (Supplementary Information) is the relatedness between
two different parasites on the same class-(k, l) patch, v(k, l) is the
reproductive value17 of a class-(k, l) parasite (the long-term genetic

contribution made by such a parasite) and a prime denotes differ-
entiation. Put verbally, equation (1) shows that the inclusive fitness
effects of increased virulence are the cost of killing one’s host, the
benefits of enhanced transmission, the costs of increased competition
for self, the costs of increased competition for relatives and the benefit
to relatives due to killing one’s host. In Supplementary Information,
we show how equation (1) is used to determine the evolutionarily
stable level of virulence (z*).

In clear contrast to recent claims4–7, analysis of equation (1) shows
that the effect of parasite dispersal on virulence can be explained
entirely using inclusive fitness theory (Fig. 1). Equation (1) is divided
into the direct (personal) fitness consequences of increased virulence
(first, second and third lines) and the indirect consequences for rela-
tives (fourth and fifth lines). The first and second lines reflect the
assumed compromise between host survival and parasite transmission:
the host exploited by the mutant parasite suffers increased mortality
(captured by the first term, 2dv(k, l)), whereas the parasite is able to
produce new infections—both locally and globally—at a slightly
higher rate (captured by

db’(z) (1{dp)kv(k{1, lz1)zdp

X
(i, j)

v(i, j)(iz1)p(iz1, j{1)

h i

which is called the ‘fecundity change’ term). For the special case of a
well-mixed parasite population (dp 5 1), all but the first line of equa-
tion (1) vanishes (Supplementary Information), giving us the standard
result that virulence evolves to maximize the basic reproductive num-
ber of the parasite16,22.

The third line of equation (1) describes the direct (personal) fitness
consequences, for the mutant, of increased local competition for fewer
uninfected hosts. The increased transmissibility of the mutant
increases the rate at which uninfected hosts become infected on the
mutant’s patch: class-(k, l) mutants move to class (k 2 1, l 1 1) at a
higher rate. Numerical results indicate that v(k, l) 2 v(k21, l11) . 0, so
this change in the local host population represents an additional direct
fitness cost of increased virulence that occurs in structured popula-
tions (Fig. 1d). Put simply, if parasite offspring do not disperse, then
they decrease the local availability of uninfected hosts and increase the
number of parasites competing for them. Consequently, increased
parasite dispersal favours higher virulence because it reduces the direct
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Figure 1 | Increasing parasite dispersal affects equation (1) in different
ways. Increasing dp decreases parasite philopatry (a); decreases the
relatedness between parasite neighbours (r(i, j) 5 r for all i and j . 2; see
Supplementary Information) (b); reduces the variation in parasite fecundity
change across patch types (c); and reduces variation in reproductive value

(RV) across parasite classes (d). The net effect of changes a–d is illustrated on
the far right. Increasing dp increases both the evolutionarily stable virulence
level, z*, and the fraction of hosts infected by the parasite. Results were
generated by numerical simulation with m 5 1, dh 5 0.9, b 5 3, N 5 5 and
b(x) 5 5x/(1 1 x).
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cost of producing offspring with which the focal individual will have to
compete (a reduction in both the difference in reproductive values and
in 1 2 dp in the third line of equation (1); Fig. 1a,d). This direct cost of
parasite offspring production appears to be what has been described as
self-shading12; thus, the third line of equation (1) can be thought of as a
mathematical description of reduced self-shading due to parasite dis-
persal, but is also analogous to the ‘tragedy of the commons’8.

The fourth and fifth lines of equation (1) describe how the increased
virulence exhibited by a mutant also has indirect fitness consequences,
through changes to the competitive environment experienced by rela-
tives. The major effect is that the increased transmission that results
from the higher virulence of the mutant means that the relatives of the
mutant also have increased competition for fewer locally available,
uninfected hosts. Line four of equation (1) is simply the third line
multiplied by both the number of parasites (other than the mutant
actor) on the patch (l 2 1) and the mean relatedness of those other
parasites to the mutant (r(k, l)). This indirect cost of increased virulence
is reduced by parasite dispersal, through making relatives less likely to
interact (Fig. 1b), and by decreasing the extent to which an increased
virulence reduces the availability of uninfected hosts to relatives
(a reduction in 1 2 dp, r(k, l) and the difference in reproductive values
in the fourth line of equation (1); Fig. 1a, b, d). Consequently,
increased parasite dispersal favours higher virulence, because it
reduces competition between relatives and, hence, reduces the indirect
cost of higher virulence. This is analogous to self-shading but applies
to the relatives of the mutant actor, so it could be thought of as kin
shading. Kin shading is a between-hosts equivalent to the previous
result that a lower relatedness (higher strain diversity) within the same
host favours higher parasite virulence because it selects for faster
growth rates, to obtain a higher proportion of the host resources16.

The fifth line of equation (1) shows that the increased host mor-
tality due to increased virulence affects the competitive environment
experienced by the relatives of the mutant. Increased host mortality
benefits relatives because it leads to a reduction in the number of
locally competing parasites (a parasite dies along with its host) and
because it clears a space that can later be filled by newborn (uninfec-
ted) hosts. Increased host mortality is also potentially costly to rela-
tives, because it reduces the number of local hosts (a source of
newborn, uninfected hosts). In many cases, numerical results indi-
cate that v(k, l21) 2 v(k, l) . 0, meaning that the increased host mor-
tality that results from increased mutant virulence provides a net
benefit to the mutant’s relatives (upper lines in Fig. 1d). In these
same cases, reduced parasite dispersal leads to a decrease in the com-
petition experienced by relatives and, hence, an indirect benefit to
higher virulence. In other cases, v(k, l) . v(k, l21) and the term
d(v(k, l21) – v(k, l))r(k, l)(l – 1) of equation (1) counts as a cost in
increased virulence. These latter cases are characterized by low host
dispersal rates, so the cost of increased virulence here stems from the
depletion of the main source of new, uninfected hosts. We must

emphasize that even when d(v(k, l21) – v(k, l))r(k, l)(l – 1) counts as an
inclusive fitness benefit, its size at equilibrium appears to be insuf-
ficient to raise the evolutionarily stable virulence level above that
found in well-mixed populations.

More generally, as well as clarifying why the parasite dispersal rate
should influence virulence, our model also shows how and why the
parasite dispersal rate will interact with other parameters such as the
maximum transmissibility of the parasite (bmax), the reproductive
rate of the host and the host dispersal rate (Fig. 2). Increased host
dispersal would favour increased virulence, through decreasing the
extent to which increased virulence leads to self-shading and kin
competition, as well as through any influence on parasite dispersal
by moving parasites within hosts.

The reason why the parasite dispersal rate should influence virulence
has proved controversial. Previous studies have offered four different
explanations: virulent strains being surrounded by other infected indi-
viduals (self-shading)12; over-exploitation of the local availability of
hosts (tragedy of the commons)8; competition between related strains
(‘kin selection’)15; and the over-exploitation of local hosts and, hence,
the extinction of parasite groups (the original Wynne-Edwards theory
of ‘group selection’)6,11. It has also been suggested that the relationship
between parasite dispersal and virulence is beyond the scope of existing
evolutionary theory25.

Our results show that an increase in parasite dispersal rate leads to
selection for increased growth and, hence, to higher virulence for three
reasons (Fig. 1). Increased dispersal provides a direct benefit to greater
virulence, because it (1) increases the relative value of producing
offspring (dispersers are worth more than non-dispersers) and (2)
reduces the extent to which producing offspring will lead to the focal
individual experiencing an increase in competition for available hosts
(self-shading12). Increased dispersal provides an indirect benefit to
greater virulence, because it (3) reduces the extent to which producing
offspring will lead to relatives experiencing an increase in competition
for available hosts (kin shading). The previous verbal explanations can
be linked to these causal forces, in that self-shading12 is our reason 1,
the tragedy of the commons8 involves our reasons 2 and 3, competi-
tion between relatives15 is our reason 3 and the extinction of parasite
groups6,11 is linked to reasons 2 and 3; if an individual causes harm to
their patch, then this cost is paid by both the focal individual and their
relatives on the patch (that is, the group-selection components can
always be partitioned into offspring and non-offspring components).
There is also a fourth effect that works in the opposite direction,
favouring a lower virulence with increased parasite dispersal. This
effect is a consequence of the indirect benefit of reduced competition
due to the number of relatives dying being greater at lower dispersal
rates, but this is outweighed by the other three factors.

To conclude, we have shown that selection on rare mutant viru-
lence phenotypes in structured populations of parasites can be
explained by inclusive fitness theory. This is the latest of numerous
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Figure 2 | Host and parasite life histories affect the relationship between
stable virulence level and parasite dispersal rate. Relationship between z*
and dp as host life-history parameters vary (a, b) and as maximum disease
transmissibility, a parasite life-history trait, varies (c). a, From top to
bottom, dh 5 0.9, 0.6 and 0.3 (b 5 3). b, From top to bottom, b 5 9, 6 and 3

(dh 5 0.3). Remaining parameters in a and b were m 5 1, N 5 5 and
b(x) 5 5x/(1 1 x). c, From top to bottom, bmax 5 5, 7.5 and 20; remaining
parameters were m 5 1, dh 5 0.3, b 5 3, N 5 5 and b(x) 5 bmaxx/(1 1 x).
Additional, qualitatively similar results are presented in Supplementary
Information.
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examples that have accumulated over the past 30 years, in which it
has been claimed that group selection and not kin selection is acting
in a particular situation, only for explicit analyses to show other-
wise26,27. Future confusion could be avoided if such claims were
backed by formal analyses that actually examine the underlying
selective forces, rather than just verbal arguments26. More generally,
our results emphasize the difference between levels of adaptation and
levels of selection28. The multilevel (group) selection and kin selec-
tion (inclusive fitness) approaches to social evolution have long been
known to be mathematically equivalent and, if the analyses are per-
formed correctly, do not lead to conflicting predictions29,30. Thus,
irrespective of the relative strengths of within-group versus
between-group selection, individuals are predicted to maximize their
inclusive fitness. In contrast, groups are only predicted to evolve
traits that function to maximize their fitness in extreme situations
where there is no conflict of interest between the members of the
group28. Put another way, the presence of group selection does not
invalidate the idea that the individual is an adaptive unit, and it does
not validate the idea that the group is an adaptive unit28.
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Supplementary Information 

Patch Dynamics 

Habitat patches, in our model, are classified according the number of susceptible hosts 

(i) and the number of infected hosts (j) found to reside there (here, 0 ≤ i + j ≤ N).  We 

use the vector, (i, j) to indicate the class to which a given patch belongs. 

Let x(i,j) denote the density of class-(i,j) patches in our infinite model population, 

and let 

! 

p
(i, j ) = x

( i, j ) x
(k,l )

(k,l )
"  denote the population-wide frequency of class-(i, j) 

patches.   

Class- (i,j) patches are created from other patches, whose classification belongs to 

the set  

! 

U
(i, j ) = (i "1, j),(i +1, j),(i, j +1),(i +1, j "1){ }  

2 

as hosts either die or  become infected.  Class-(i,j) patches are destroyed in the same 

way to become patches whose classification belongs to the set 

! 

D
(i, j ) = (i "1, j),(i +1, j),(i, j "1),(i "1, j +1){ } .  

If q(i,j),(k,l) denotes the rate at which a class-(k,l) patch becomes a class-(i,j) patch, then 

the patch dynamics, are described by 
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dx
(i, j )

dt
= q

(i, j ),(k,l )x(k,l )
(k,l )"U( i , j )

# $ q
(k,l ),( i, j )x(i, j )

(k,l )"D( i , j )

# . (S1) 

In Table S1, we state the rates q(i,j),(k,l), using  the notation introduced in the main text of 

the paper, as well as the shorthand notation, 

! 

b
(k,l ) =

b 1" dh( ) k + l( ) + bdh S + I( ) for k + l < N

0 otherwise

# 
$ 
% 

 

where b is the per capita rate of host reproduction (for both susceptible and infected 

hosts), dh is the natal dispersal rate of the host, and  

! 

S = kp
(k,l ) = kp

(k,l )

l= 0

N"k

#
k= 0

N

#
(k,l )

# , 

! 

I = lp
(k,l ) = lp

(k,l )

l=1

N"k

#
k= 0

N

#
(k,l )

# = lp
(k,l )

l= 0

N"k

#
k= 0

N

# . 

Additional shorthand notation includes, 

! 

"
(k,l )(z) = "(z) 1# dp( )l + dpI[ ]k , 

and 

! 

˜ " 
(k,l )(z) =

"(z)dp (k +1)p
(k+1,l#1)

k + l $ N,

0 otherwise.

% 
& 
' 

 

Since 

! 

dx
( i, j ) /dt

(i, j )
" = 0 (patches are neither created, nor destroyed) we can say 

that 
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In Table S1, we state the rates q(i,j),(k,l), using  the notation introduced in the main text of 

the paper, as well as the shorthand notation, 

! 

b
(k,l ) =

b 1" dh( ) k + l( ) + bdh S + I( ) for k + l < N

0 otherwise

# 
$ 
% 

 

where b is the per capita rate of host reproduction (for both susceptible and infected 

hosts), dh is the natal dispersal rate of the host, and  

! 

S = kp
(k,l ) = kp

(k,l )

l= 0

N"k

#
k= 0

N

#
(k,l )

# , 

! 

I = lp
(k,l ) = lp

(k,l )

l=1

N"k

#
k= 0

N

#
(k,l )

# = lp
(k,l )

l= 0

N"k

#
k= 0

N

# . 

Additional shorthand notation includes, 

! 

"
(k,l )(z) = "(z) 1# dp( )l + dpI[ ]k , 

and 

! 

˜ " 
(k,l )(z) =

"(z)dp (k +1)p
(k+1,l#1)

k + l $ N,

0 otherwise.

% 
& 
' 

 

Since 

! 

dx
( i, j ) /dt

(i, j )
" = 0 (patches are neither created, nor destroyed) we can say 

that 
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! 

dp
(i, j )

dt
= q

(i, j ),(k,l )p(k,l )
(k,l )"U( i , j )

# $ q
(k,l ),( i, j )p(i, j )

(k,l )"D( i , j )

# . (S2) 

The inclusive fitness analysis we undertake in the next section (and, indeed, in the main 

text) assumes that the solution of equation (S2) tends toward a unique, globally stable 

equilibrium.  From this point forward, then, p = (p(i,j))(i,j) will refer only to this 

equilbrium state.  We suppose further that classes (i, j) such that j ≥ 1 are in the support 

of p.  Unfortunately, non-trivial equilibrium solutions of equation (S1) can only be 

found by numerical methods. Nevertheless, numerical investigation indicates that our 

assumption, above, holds for a wide range of parameter values. 

Inclusive Fitness Model 

In this section, we give a more detailed description of how we reach equation (1) of the 

main text. The approach is the same as that used recently by Alizon & Taylor
31

 (see also 

Appendix A of ref. 32). We begin by assuming a monomorphic parasite population, i.e. 

a parasite population in which all individuals employ the same virulence “strategy” z.  

Both the class to which a parasite belongs, and the distribution of the different 

patch types in the population have important implications for parasite fitness. Let 

w(i,j),(k,l) denote the (i,j) fitness of class-(k,l) parasite, defined as the per capita rate at 

which class-(k,l) pathogens produce class-(i,j) infections, when the distribution of patch 

types has reached an equilibriumone that includes patches with infected individuals.  

Expressions for w(i,j),(k,l) are summarized in Table S2.  From these “fitness functions” we 

can determine u(i,j), the equilibrium frequency of class-(i,j) parasites, as well as v(i,j) the 

individual reproductive value of class-(i,j) parasites (i.e. the per capita contribution of 

class-(i,j) to the generations in the distant future). The former quantities satisfy the 

equation, 

! 

w
(i, j ),(k,l )u(k,l )

(k,l )

" = 0, whereas the latter quantities satisfy, 

! 

v
(i, j )w( i, j ),(k,l ) = 0

(i, j )

" . 

Equilibrium frequencies and reproductive values, as we will see, are some of the key 

building blocks of kin selection models
32, 33

.  
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4 

We have, so far, been thinking of a scenario in which all parasites exploit hosts to 

the same extent. In this scenario, all infected hosts suffer  “normal” disease-induced 

mortality at rate, z.  To build our kin selection model, we introduce slightly deviant and 

extremely rare exploitation strategy that changes the mortality rate of infected hosts by a 

very small amount
34,35

.  We then ask, does a shift from a normal host exploitation 

strategy to a deviant one increase or decrease the inclusive fitness of a parasite?  

Let ΔW(k,l) denote the change that occurs in the inclusive fitness of a single class-

(k,l) pathogen (the “focal actor”) as it changes its exploitation strategy from normal to 

deviant.  As mentioned above, the strategy shift implies that the mortality of the 

individual playing host to the focal actor changes by a small amount, which we now 

denote as, δ >0.  We record this increased mortality as a cost paid by the focal actor and 

each of its (l − 1) patchmates, writing 

! 

"#v
(k,l )
1+ l "1( )r(k,l )( ) = "#v

(k,l )
r 
(k,l )

l , where r(k,l) is 

the relatedness between two different parasites on the same class-(k,l) patch, and 

! 

r 
(k,l )

is 

the relatedness between two pathogens on the same class-(k,l) patch, chosen at random 

with replacement. The term v(k,l) reflects the fact that the costs are in (k,l)-fitness and 

must be included to make sure all fitness changes receive proper weighting in the final 

calculation. 

Increased host mortality also carries with it certain inclusive fitness benefits when 

l > 1. When the focal actor and its host have died, (l −1) surviving parasites immediately 

join class-(k, l −1). We record this change as, 

! 

"v
(k,l#1)r(k,l )(l #1) = "v

(k,l#1) r 
(k,l )

l #1( ) . 

When k ≥ 1 susceptible hosts can be found locally, and so increased host 

exploitation implies that the focal actor produces new local infections at a higher rate. In 

this case, the rate at which local infections occur is increased by 

! 

" # $ (z) 1% dp( )k . We 

record the inclusive-fitness change as 

! 

"v
(k#1,l +1)

$ % (z) 1# dp( )k 1+ r 
(k,l )l( ).  The multiplier, 

! 

1+ r 
(k,l )

l( ) is included here, because, when a new local infection occurs, the actor, the 
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l( ) is included here, because, when a new local infection occurs, the actor, the 

5 

actor’s “offspring” and the actor’s (l – 1) patchmates all become class-(k–1, l+1) 

parasites simultaneously. Naturally, when the actor and its patchmates become class-(k–

1, l+1) parasites they cease to be class-(k,l) pathogens, hence we must record an 

additional inclusive fitness loss of, 

! 

"#v
(k,l )

$ % (z) 1" dp( )klr 
(k,l ) in our calculation. 

Increased host exploitation also means that the rate at which the focal parasite 

produces non-local infections increases.  Specifically, if p(i+1, j-1) denotes the frequency 

of class-(i +1, j – 1) patches, the increase in w(i,j) is given by, 

! 

"v
(i, j )

# $ (z)dp i +1( )p( i+1, j%1) .  

We make the standard assumption that non-local infections occur only on very distant 

patches, so that the effects these infections have on the fitness of (similarly distant) 

relatives of the focal parasite need not be included in our calculation. We can then write 

the change in the inclusive fitness of a class-(k,l) parasite as 

! 

"W
(k,l ) = #$v

(k,l )r 
(k,l )l + $v

(k,l#1) r 
(k,l )l #1( ) + $v

(k#1,l +1)
% & (z) 1# dp( )k 1+ r 

(k,l )l( )  

! 

"#v
(k,l )

$ % (z) 1" dp( )klr 
(k,l ) + # v

( i, j )
$ % (z)dp i +1( )p

(i+1, j"1)

( i, j )

&   (S3) 

which rearranges to give equation (1) of the main text.  The overall change in the 

inclusive fitness of the mutant, call it ΔW, is a weighted average of all ΔW(k,l), where 

class frequencies u(k,l) are used as weights. 

Calculation of Relatedness Coefficients 

We can calculate the coefficients of relatedness for a neutral population using the notion 

of identity by descent, or IBD.  Two genes are said to be IBD provided they have 

descended from a common ancestor without intervening mutation.  The coefficient of 

consanguinity (CC) between two (same-locus) genes is simply the probability that the 

alleles are IBD.   



5www.nature.com/nature

SUPPLEMENTARY INFORMATIONdoi: 10.1038/nature08071

5 

actor’s “offspring” and the actor’s (l – 1) patchmates all become class-(k–1, l+1) 

parasites simultaneously. Naturally, when the actor and its patchmates become class-(k–

1, l+1) parasites they cease to be class-(k,l) pathogens, hence we must record an 

additional inclusive fitness loss of, 

! 

"#v
(k,l )

$ % (z) 1" dp( )klr 
(k,l ) in our calculation. 

Increased host exploitation also means that the rate at which the focal parasite 

produces non-local infections increases.  Specifically, if p(i+1, j-1) denotes the frequency 

of class-(i +1, j – 1) patches, the increase in w(i,j) is given by, 

! 

"v
(i, j )

# $ (z)dp i +1( )p( i+1, j%1) .  

We make the standard assumption that non-local infections occur only on very distant 

patches, so that the effects these infections have on the fitness of (similarly distant) 

relatives of the focal parasite need not be included in our calculation. We can then write 

the change in the inclusive fitness of a class-(k,l) parasite as 

! 

"W
(k,l ) = #$v

(k,l )r 
(k,l )l + $v

(k,l#1) r 
(k,l )l #1( ) + $v

(k#1,l +1)
% & (z) 1# dp( )k 1+ r 

(k,l )l( )  

! 

"#v
(k,l )

$ % (z) 1" dp( )klr 
(k,l ) + # v

( i, j )
$ % (z)dp i +1( )p

(i+1, j"1)

( i, j )

&   (S3) 

which rearranges to give equation (1) of the main text.  The overall change in the 

inclusive fitness of the mutant, call it ΔW, is a weighted average of all ΔW(k,l), where 

class frequencies u(k,l) are used as weights. 

Calculation of Relatedness Coefficients 

We can calculate the coefficients of relatedness for a neutral population using the notion 

of identity by descent, or IBD.  Two genes are said to be IBD provided they have 

descended from a common ancestor without intervening mutation.  The coefficient of 

consanguinity (CC) between two (same-locus) genes is simply the probability that the 

alleles are IBD.   

6 

Let r(i,j) with j ≥ 2 denote the CC between genes drawn from two different class-(i, 

j) parasites found on the same patch. To calculate r(i,j), observe that a class-(i, j) patch 

was a class-(k, l) patch dt time units ago with probability α(i,j),(k,l)dt, where 

! 

"
(i, j ),(k,l ) =

q
( i, j ),(k,l )p(k,l )

p
(i, j )

. We use α(i,j),(k,l) to write a differential equation that describes 

how the CCs r(i,j) change over time.  Assuming j > 2, then 

! 

dr
(i, j )

dt
="

( i, j ),( i#1, j ) r(i#1, j ) # r( i, j )( ) +"
( i, j ),( i+1, j ) r(i+1, j ) # r( i, j )( ) +"

( i, j ),( i, j+1) r(i, j+1) # r( i, j )( ) 

! 

+"
( i, j ),( i+1, j#1)

1# dp( ) j #1( )

1# dp( ) j #1( ) + dpI

2

j j #1( )
+ 1#

2

j j #1( )

$ 

% 
& 

' 

( 
) r(i+1, j#1) # r( i, j )

* 

+ 
, 
, 

- 

. 
/ 
/ 
 

! 

+"
( i, j ),( i+1, j#1)

dpI

1# dp( ) j #1( ) + dpI
1#
2

j

$ 

% 
& 

' 

( 
) r(i+1, j#1) # r( i, j )

* 

+ 
, 

- 

. 
/ . (S4) 

We omit the term 

! 

"
(i, j ),(i#1, j ) r( i#1, j ) # r(i, j )( ) in (S4) when i = 0, and we omit the terms 

! 

"
(i, j ),(i+1, j ) r( i+1, j ) # r(i, j )( ) and 

! 

"
(i, j ),(i, j+1) r( i, j+1) # r(i, j )( ) when i + j = N. When j = 2, there are 

no terms in eqn (A6) that involve the undefined coefficient r(i+1, j -1).  In this case, (S4) 

becomes 

! 

dr
(i,2)

dt
="

( i,2),( i#1,2) r(i#1,2) # r( i,2)( ) +"
( i,2),( i+1,2) r(i+1,2) # r( i,2)( ) +"

( i,2),( i,3)
r
(i,3)

# r
( i,2)( )  

! 

+"
( i,2),( i+1,1)

1# dp( )
1# dp( ) + dpI

# r
( i,2)

$ 

% 
& 
& 

' 

( 
) 
) 
. 

Remarkably, at equilibrium r(i, j) = r for all (i, j), where 

! 

r =
1" dp( )

1" dp( ) + dpI
#1. (S5) 

Since I > 0, equality in (A8) holds only when dp = 0. Notice that, as the average number 

of infections per patch (I) increases, r decreases. Notice also that  
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of infections per patch (I) increases, r decreases. Notice also that  

7 

! 

r 
(i, j ) =

1

j
+

j "1

j
r . 

The fact that r does not depend on j is worth discussing, since the result may initially 

appear counterintuitive.  The absolute rates of host mortality and local infection within 

each patch are, of course, in proportion to the number of infected hosts found locally. 

However, at equilibrium, the impact of each mortality or infection event upon local 

relatedness is in inverse proportion o the number of local infected hosts. Hence, 

although relatedness-altering events occur more frequently in patches with more 

infected hosts, the individual impact of each event is more diluted. 

Well-Mixed Pathogen Populations 

When pathogen dispersal, dp = 1 we say that the pathogen population is well-mixed. In 

this case, the class structure of the pathogen population has no bearing on pathogen 

fitness and pathogens are not related to non-self patchmates. Formally, we can say that 

! 

v
(k,l )

"1, 

! 

r 
(k,l )

=1/ l , and so  

! 

"W = #$ + $ % & (z)S ,         (2) 

where 

! 

S = (i +1)p
( i+1, j"1)

(i, j )

# = ip
(i, j )

(i, j )

#  gives the average number of susceptible 

individuals per patch.  At evolutionary equilibrium, then, our inclusive fitness model 

tells us that the marginal fitness benefit due to increased in disease transmission (i.e. the 

term, 

! 

" # $ (z)S ) is exactly balanced by the marginal fitness cost of increased host 

mortality (i.e. the term, −δ).  This same result can be established with a standard game 

theory model that measures fitness using pathogen lifetime reproductive 

success,

! 

"(z)S /(µ + z) (refs 16,36).   

If we assume the simple virulence-transmissibility 

relationship,

! 

"(z) = "
max
z (1+ z) , then disease transmissibility cannot exceed the 
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max
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8 

maximum level given by βmax. With this assumption it is possible to show that evolution 

is at equilibrium with respect z when 

! 

z = z* = µ .  In particular when µ = 1, z* =1. 

Numerical Investigations 

We analyzed the inclusive fitness model from the main text to identify those disease-

induced mortality rates associated with the convergence stable levels of host 

exploitation.  Convergence stability is a notion borrowed from evolutionary game 

theory
35,37,38

.  If z* is convergence stable, then the distance between z* and x, the 

phenotype displayed by successful mutant invaders of a population that is otherwise 

fixed at z, is always less than the distance between z* and z.  In the context of the 

present model the disease-induced mortality rate associated with the convergence stable 

host exploitation rate is an evolutionary equilibrium, z* that satisfies the following pair 

of conditions: 

! 

"W
z= z*

> 0 when δ < 0 and 

! 

"W
z= z*

< 0 when δ > 0.  

Results were generated through an iterative numerical procedure. For each 

parameter combination, we began by guessing a corresponding z*, call it z0.  Given z0, 

we determined the sign of the inclusive fitness effect, ΔW and refined our guess 

accordingly.  Given the refined guess, z1, the sign of ΔW was determined yet again, and 

further refinements were made.  The process of calculating the sign of ΔW and making 

smaller and smaller refinements continued until successive refinements agreed to 

several decimal places. We implement our numerical procedure using the computer 

software package, Maple (version 11). 

Predictions made by the inclusive fitness model proposed here agree with those 

made elsewhere. Most importantly, our model predicts that reduced mixing of the 

pathogen population (i.e. lower dispersal rate, dp) promotes reduced host exploitation, 

and in turn reduced disease-induced host mortality (Figs. S1, S2).  
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9 

Naturally, the relationship between pathogen mixing and disease-induced host 

mortality depends on the parameter values under consideration.  If there exists a 

maximum possible transmissibility (βmax), then increasing this maximum encourages 

larger reductions in disease-induced host mortality (Fig. S1).  Moreover, the rate at 

which such reductions in host mortality occur depend not only βmax but also on N (Fig. 

S1). 

Host reproduction rate (b) and, to a lesser degree, host dispersal rate (dh) also 

influence the evolution disease-induced host mortality.  Specifically, increasing the 

value of b and/or dh reduces the extent to which parasite dispersal influences disease-

induced mortality (Fig. S2). 

Related Issues 

We conclude by clarifying a number of links to existing work. Hamilton
39

 was the first 

to suggest that a lower relatedness between the parasites infecting a host would lead to 

selection for faster exploitation of host resources, and hence a higher virulence, This has 

since been demonstrated formally by a number of authors
16,33,40-45

. Our results show that 

an analogous prediction (albeit more complex) arises in spatially structured populations, 

where patterns of dispersal determine the relatedness of parasites competing for hosts 

within patches (see also ref. 33, p.163-168). Our method builds upon previous 

applications of inclusive fitness theory that have examined the evolution of 

cooperation
31

 in spatial populations with explicit within and between patch 

demography.  In particular, we follow previous authors by treating the deviant virulence 

strategy as rare and by neglecting its long-term effects on both patch distribution and 

reproductive value (see also Appendix A of ref. 32).  In this way our analysis focuses on 

the initial success of a mutant, rather than its probability of fixation. It would certainly 

be very useful to examine the consequences of demographic stochasticity (e.g. as in ref. 
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21) or the consequences putting alternative forms of parasite interaction, such as 

cooperation
46,47

, or spiteful interference
48

 into an explicit spatial setting (see also ref. 

49). Finally, we draw an analogy to the sex ratio literature, where the benefit of 

determining the underlying selective forces have long been appreciated
29,50
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Table S1. Rates q(i,j),(k,l) (from eqn S1) at which class-(i,j) patches are (a) 

created and (b) destroyed. Recall that i and j denote the number of 

susceptible and infected hosts, respectively, found on a given patch.  We 

assume i, j ≥  0, with i + j ≤  N 

(k,l) → (i,j) Description q(i,j),(k,l) 

(a) Inputs to class-(i, j)  

(i +1, j) → (i,j) susceptible host dies on (i+1,j)-patch µ(i +1)  (or zero if i + j = N) 

(i – 1,j) → (i,j) newborn host arrives on (i – 1,j)-patch b(i – 1, j) 

(i, j+1) → (i,j) infected host dies on (i, j+1)-patch (µ + z)(j + 1) (or zero if i+ j =N) 

(i+1,j –1) → (i,j) infection occurs on (i+1,j –1)-patch β(i+1,j –1)(z) 

   

(b) Outputs from class-(i,j)  

(i, j) → (i –1, j) susceptible host dies on (i,j)-patch µi    

(i, j) → (i + 1, j) newborn host arrives on (i,j)-patch b(i,j) 

(i, j) → (i, j –1) infected host dies on (i, j)-patch (µ + z)j   

(i,j) → (i –1,j +1) infection occurs on (i,j)-patch β(i,j )(z) 
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Table S2. Expressions for wild-type, or “normal” fitness function, w(i,j),(k,l). 

Recall that j, l ≥  1 when describing pathogen class structure. 

(i,j) w(i,j),(k,l) 

(k, l) 

! 

" µk + µ + z( )l + b(k,l )
+ #

(k,l )
(z)( ) + ˜ # 

(k,l )
(z) 

(k – 1, l) 

! 

µk + ˜ " 
(k#1,l )

(z) 

(k + 1, l) 

! 

b
(k,l )

+ ˜ " 
(k+1,l )

(z) 

(k, l – 1) 

! 

µ + z( ) l "1( ) + ˜ # 
(k,l"1)

(z)  

(k – 1, l + 1) 

! 

"(z) 1# dp( )k + "
(k,l )(z) + ˜ " 

(k#1,l+1)
(z) 

all others 

! 

˜ " 
( i, j )(z)  
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Figure Legends 

Fig. S1. Relationship between stable level of disease-induced host mortality (i.e. 

ES virulence, z*) and pathogen dispersal rate, dp as both patch carrying 

capacity (N) and maximum disease transmissibility (βmax = limx→∞β(x)) vary. 

Remaining parameters were µ= 1, dh = 0.3 and b = 3, and β(x) was assumed to 

take the form, βmax x/(1+x) (see text for parameter definitions). From top to 

bottom βmax = 5, 7.5, and 20, respectively. Results for additional values of βmax 

are presented as dashed lines (values are as indicated). The qualitative pattern 

illustrated in panels corresponding to N = 3, 5 was also identified for N = 10, 

however the effect was too small to be seen easily along side other plots. 

 

Fig. S2. Relationship between stable level of disease-induced host mortality (i.e. 

ES virulence, z*) and pathogen dispersal rate, dp as both patch carrying 

capacity (N) and host life-history parameters vary. Remaining parameters were 

µ= 1 and β(x) = 5x/(1+x) (see text for definitions). (a) From top to bottom host 

dispersal takes values dh  = 0.9, 0.6, and 0.3 respectively under the assumption 

that b = 3. (b) From top to bottom host dispersal takes values b = 9, 6, and 3 

respectively under the assumption that dh = 0.3. Results for additional values of 

b are presented as dashed lines in (b) (values are as indicated). To better 

elucidate the effect of changes in host life-history parameters for the case N = 2, 

numerical analyses were also carried out assuming β(x) = 15x/(1+x). These 

additional results are presented as inset figures whose axes display the same 

range of dp and z* values used in the main panels. 
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